Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular-based design and emerging applications of nanoporous carbon spheres

Subjects

Abstract

Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic and TEM images of NCS.
Figure 2: Primary methods for synthesizing NCS.
Figure 3: Functionalized NCS.
Figure 4
Figure 5: Application of NCS as an electrode material for supercapacitors and batteries.
Figure 6: Biomedical applications of NCS.

References

  1. Oh, M. & Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005).

    Article  CAS  Google Scholar 

  2. Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006).

    Article  CAS  Google Scholar 

  3. Deshmukh, A. A., Mhlanga, S. D. & Coville, N. J. Carbon spheres. Mater. Sci. Eng. R 70, 1–28 (2010).

    Article  CAS  Google Scholar 

  4. Nieto-Marquez, A., Romero, R., Romero, A. & Valverde, J. L. Carbon nanospheres: Synthesis, physicochemical properties and applications. J. Mater. Chem. 21, 1664–1672 (2011).

    Article  CAS  Google Scholar 

  5. Lu, A., Hao, G., Sun, Q., Zhang, X. & Li, W. Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol. Chem. Phys. 213, 1107–1131 (2012).

    Article  CAS  Google Scholar 

  6. Kim, T. et al. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano Lett. 8, 3724–3727 (2008).

    Article  CAS  Google Scholar 

  7. Fang, Y. et al. A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed. 49, 7987–7991 (2010).

    Article  CAS  Google Scholar 

  8. Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Commun. 4, 3798 (2013).

    Google Scholar 

  9. Sun, X. & Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597–601 (2004).

    Article  CAS  Google Scholar 

  10. Ouyang, Y., Shi, H., Fu, R. & Wu, D. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties. Sci. Rep. 3, 1430 (2013).

    Article  CAS  Google Scholar 

  11. Wang, S. et al. Temperature-programmed precise control over the sizes of carbon nanospheres based on benzoxazine chemistry. J. Am. Chem. Soc. 133, 15304–15307 (2011).

    Article  CAS  Google Scholar 

  12. Liu, J. et al. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011).

    Article  CAS  Google Scholar 

  13. Choma, J. et al. New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. J. Mater. Chem. 22, 12636–12642 (2012).

    Article  CAS  Google Scholar 

  14. Qiao, Z. et al. Controlled synthesis of mesoporous carbon nanostructures via a 'silica-assisted' strategy. Nano Lett. 13, 207–212 (2013).

    Article  CAS  Google Scholar 

  15. Fuertes, A. B., Valle-Vigon, P. & Sevilla, M. One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 48, 6124–6126 (2012).

    Article  CAS  Google Scholar 

  16. Cui, R. et al. Gold nanoparticle–colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 18, 2197–2204 (2008).

    Article  CAS  Google Scholar 

  17. Ryoo, R., Joo, S. H., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001).

    Article  CAS  Google Scholar 

  18. Liang, C., Li, Z. & Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem. Int. Ed. 47, 3696–3717 (2008).

    Article  CAS  Google Scholar 

  19. Wan, Y., Shi, Y. & Zhao, D. Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chem. Mater. 20, 932–945 (2008).

    Article  CAS  Google Scholar 

  20. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  21. Wang, Z., Li, F. & Stein, A. Direct synthesis of shaped carbon nanoparticles with ordered cubic mesostructure. Nano Lett. 7, 3223–3226 (2007).

    Article  CAS  Google Scholar 

  22. Gu, J., Su, S., Li, Y., He, Q. & Shi, J. Hydrophilic mesoporous carbon nanoparticles as carriers for sustained release of hydrophobic anti-cancer drugs. Chem. Commun. 47, 2101–2103 (2011).

    Article  CAS  Google Scholar 

  23. Schuster, J. et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012).

    Article  CAS  Google Scholar 

  24. Sun, Z. et al. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano 7, 8706–8714 (2013).

    Article  CAS  Google Scholar 

  25. White, R. J., Tauer, K., Antonietti, M. & Titirici, M. Functional hollow carbon nanospheres by latex templating. J. Am. Chem. Soc. 132, 17360–17363 (2010).

    Article  CAS  Google Scholar 

  26. Liu, R. et al. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed. 50, 6799–6802 (2011).

    Article  CAS  Google Scholar 

  27. Chen, A. et al. Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. J. Mater. Chem. A 1, 1045–1047 (2013).

    Article  Google Scholar 

  28. Fang, X. et al. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures. Nanoscale 5, 6908–6916 (2013).

    Article  CAS  Google Scholar 

  29. Zhang, K., Zhao, Q., Tao, Z. & Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 6, 38–46 (2013).

    Article  CAS  Google Scholar 

  30. Li, N. et al. Sol–gel coating of inorganic nanostructures with resorcinol-formaldehyde resin. Chem. Commun. 49, 5135–5137 (2013).

    Article  CAS  Google Scholar 

  31. Feng, S. et al. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. Chem. Commun. 50, 329–331 (2014).

    Article  CAS  Google Scholar 

  32. Valle-Vigon, P., Sevilla, M. & Fuertes, A. B. Synthesis of uniform mesoporous carbon capsules by carbonization of organosilica nanospheres. Chem. Mater. 22, 2526–2533 (2010).

    Article  CAS  Google Scholar 

  33. Liang, C., Hong, K., Guiochon, G. A., Mays, J. W. & Dai, S. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angew. Chem. Int. Ed. 43, 5785–5789 (2004).

    Article  CAS  Google Scholar 

  34. Tanaka, S., Nishiyama, N., Egashira, Y. & Ueyama, K. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chem. Commun. 2125–2127 (2005).

  35. Meng, Y. et al. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 44, 7053–7059 (2005).

    Article  CAS  Google Scholar 

  36. Gu, D. et al. An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites. Adv. Mater. 22, 833–837 (2010).

    Article  CAS  Google Scholar 

  37. Yan, Y., Zhang, F., Meng, Y., Tu, B. & Zhao, D. One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. Chem. Commun. 2867–2869 (2007).

  38. Wu, Z. et al. A general 'surface-locking' approach toward fast assembly and processing of large-sized, ordered, mesoporous carbon microspheres. Angew. Chem. Int. Ed. 52, 13764–13768 (2013).

    Article  CAS  Google Scholar 

  39. Yang, Z. et al. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of α-cyclodextrin templated by F127 block copolymers. Chem. Mater. 25, 704–710 (2013).

    Article  CAS  Google Scholar 

  40. Hu, B. et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010).

    Article  CAS  Google Scholar 

  41. Shin, Y., Wang, L., Bae, I., Arey, B. W. & Exarhos, G. J. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C 112, 14236–14240 (2008).

    Article  CAS  Google Scholar 

  42. Scholz, S. et al. Cobalt–carbon spheres: Pyrolysis of dicobalthexacarbonyl-functionalized poly(p-phenyleneethynylene)s. Adv. Mater. 17, 1052–1055 (2005).

    Article  CAS  Google Scholar 

  43. Agrawal, M., Gupta, S. & Stamm, M. Recent developments in fabrication and applications of colloid based composite particles. J. Mater. Chem. 21, 615–627 (2011).

    Article  CAS  Google Scholar 

  44. Lu, A., Hao, G. & Sun, Q. Can carbon spheres be created through the Stöber method? Angew. Chem. Int. Ed. 50, 9023–9025 (2011).

    Article  CAS  Google Scholar 

  45. Zhao, J. et al. A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres. Macromolecules 46, 140–145 (2013).

    Article  CAS  Google Scholar 

  46. Qian, J. et al. A seeded synthetic strategy for uniform polymer and carbon nanospheres with tunable sizes for high performance electrochemical energy storage. Chem. Commun. 49, 3043–3045 (2013).

    Article  CAS  Google Scholar 

  47. Zhou, H. et al. Facile preparation and ultra-microporous structure of melamine-resorcinol-formaldehyde polymeric microspheres. Chem. Commun. 49, 3763–3765 (2013).

    Article  CAS  Google Scholar 

  48. Friedel, B. & Greulich-Weber, S. Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin. Small 2, 859–863 (2006).

    Article  CAS  Google Scholar 

  49. Ai, K., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C-dominant N-doped carbon sub-micrometer spheres with a tunable size: A versatile platform for highly efficient oxygen-reduction catalysts. Adv. Mater. 25, 998–1003 (2013).

    Article  CAS  Google Scholar 

  50. Yan, J. et al. Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9, 596–603 (2013).

    Article  CAS  Google Scholar 

  51. Yang, T., Liu, J., Zheng, Y., Monteiro, M. J. & Qiao, S. Z. Facile fabrication of core–shell-structured Ag@carbon and mesoporous yolk–shell-structured Ag@carbon@silica by an extended Stöber method. Chem. Eur. J. 19, 6942–6945 (2013).

    Article  CAS  Google Scholar 

  52. Guan, B., Wang, X., Xiao, Y., Liu, Y. & Huo, Q. A versatile cooperative template-directed coating method to construct uniform microporous carbon shells for multifunctional core–shell nanocomposites. Nanoscale 5, 2469–2475 (2013).

    Article  CAS  Google Scholar 

  53. You, B., Yang, J., Sun, Y. & Su, Q. Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor. Chem. Commun. 47, 12364–12366 (2011).

    Article  CAS  Google Scholar 

  54. You, L. et al. Ultrafast hydrothermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave method. Langmuir 28, 10565–10572 (2012).

    Article  CAS  Google Scholar 

  55. Wang, G. et al. Weak acid–base interaction induced assembly for the synthesis of diverse hollow nanospheres. Chem. Mater. 23, 4537–4542 (2011).

    Article  CAS  Google Scholar 

  56. Tang, J. et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. 54, 588–593 (2015).

    CAS  Google Scholar 

  57. Elsabahy, M. & Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012).

    Article  CAS  Google Scholar 

  58. Wang, L. et al. Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. J. Mater. Chem. A 1, 9422–9426 (2013).

    Article  CAS  Google Scholar 

  59. Choma, J., Jamiola, D., Augustynek, K., Marszewski, M. & Jaroniec, M. Carbon–gold core–shell structures: Formation of shells consisting of gold nanoparticles. Chem. Commun. 48, 3972–3974 (2012).

    Article  CAS  Google Scholar 

  60. Zhang, H. et al. Uniform hierarchical MoO2/carbon spheres with high cycling performance for lithium ion batteries. J. Mater. Chem. A 1, 12038–12043 (2013).

    Article  CAS  Google Scholar 

  61. Yang, P. et al. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy. Chem. Eur. J. 18, 9294–9299 (2012).

    Article  CAS  Google Scholar 

  62. Bian, X. et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 22, 128–132 (2012).

    Article  CAS  Google Scholar 

  63. Zubizarreta, L., Arenillas, A. & Pis, J. J. Preparation of Ni-doped carbon nanospheres with different surface chemistry and controlled pore structure. Appl. Surf. Sci. 254, 3993–4000 (2008).

    Article  CAS  Google Scholar 

  64. Wickramaratne, N. P. & Jaroniec, M. Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles. Chem. Commun. 50, 12341–12343 (2014).

    Article  CAS  Google Scholar 

  65. Yu, J. C., Hu, X., Li, Q., Zheng, Z. & Xu, Y. Synthesis and characterization of core–shell selenium/carbon colloids and hollow carbon capsules. Chem. Eur. J. 12, 548–552 (2006).

    Article  CAS  Google Scholar 

  66. Su, F. et al. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717–724 (2011).

    Article  CAS  Google Scholar 

  67. Wickramaratne, N. P. et al. Nitrogen enriched porous carbon spheres: Attractive materials for supercapacitor electrodes and CO2 adsorption. Chem. Mater. 26, 2820–2828 (2014).

    Article  CAS  Google Scholar 

  68. Candelaria, S. L., Garcia, B. B., Liu, D. & Cao, G. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 22, 9884–9889 (2012).

    Article  CAS  Google Scholar 

  69. Wickramaratne, N. P. & Jaroniec, M. Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions. Adsorption 20, 287–293 (2013).

    Article  CAS  Google Scholar 

  70. Wohlgemuth, S., Vilela, F., Titirici, M. & Antonietti, M. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem. 14, 741–749 (2012).

    Article  CAS  Google Scholar 

  71. Wickramaratne, N. P., Perera, V. S., Ralph, J. M., Huang, S. D. & Jaroniec, M. Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. Langmuir 29, 4032–4038 (2013).

    Article  CAS  Google Scholar 

  72. Lu, A. et al. Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew. Chem. Int. Ed. 49, 1615–1618 (2010).

    Article  CAS  Google Scholar 

  73. Yang, Z. et al. Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application. Sci. Rep. 3, 2925 (2013).

    Article  Google Scholar 

  74. Lee, J., Kim, S., Yoon, J. & Jang, J. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7, 6047–6055 (2013).

    Article  CAS  Google Scholar 

  75. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  76. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nature Mater. 10, 569–581 (2011).

    Article  CAS  Google Scholar 

  77. Zhai, Y. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828–4850 (2011).

    Article  CAS  Google Scholar 

  78. Zhang, L. L. & Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009).

    Article  CAS  Google Scholar 

  79. Tang, K. et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2, 873–877 (2012).

    Article  CAS  Google Scholar 

  80. He, G. et al. Tailoring porosity in carbon nanospheres for lithium-sulfur battery cathodes. ACS Nano 7, 10920–10930 (2013).

    Article  CAS  Google Scholar 

  81. Sun, Y. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Mater. 11, 942–947 (2012).

    Article  CAS  Google Scholar 

  82. Falco, C. et al. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem 6, 374–382 (2013).

    Article  CAS  Google Scholar 

  83. Tanaka, S., Nakao, H., Mukai, T., Katayama, Y. & Miyake, Y. An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure. J. Phys. Chem. C 116, 26791–26799 (2012).

    Article  CAS  Google Scholar 

  84. Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    Article  CAS  Google Scholar 

  85. Zheng, G. Y. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotech. 9, 618–623 (2014).

    Article  CAS  Google Scholar 

  86. Zhou, W. D. et al. Polydopamine-coated, nitrogen-doped, hollow carbon sulfur double-layered core–shell structure for improving lithium sulfur batteries. Nano Lett. 14, 5250–5256 (2014).

    Article  CAS  Google Scholar 

  87. Li, Z. et al. Highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li-S batteries. ACS Nano 8, 9295–9303 (2014).

    Article  CAS  Google Scholar 

  88. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotech. 9, 187–192 (2014).

    Article  CAS  Google Scholar 

  89. Demir Cakan, R. et al. Hydrothermal carbon spheres containing silicon nanoparticles: Synthesis and lithium storage performance. Chem. Commun. 3759–3761 (2008).

  90. Zhang, W. et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160–1165 (2008).

    Article  CAS  Google Scholar 

  91. Zhao, Y., Li, J., Wu, C., Ding, Y. & Guan, L. A yolk–shell Fe3O4@C composite as an anode material for high-rate lithium batteries. ChemPlusChem 77, 748–751 (2012).

    Article  CAS  Google Scholar 

  92. Su, F. et al. Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells. Chem. Mater. 22, 832–839 (2010).

    Article  CAS  Google Scholar 

  93. Dou, J. & Zeng, H. C. Preparation of Mo-embedded mesoporous carbon microspheres for Friedel–Crafts alkylation. J. Phys. Chem. C 116, 7767–7775 (2012).

    Article  CAS  Google Scholar 

  94. Xiong, H. F. et al. Fischer–Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. J. Catal. 311, 80–87 (2014).

    Article  CAS  Google Scholar 

  95. Zhao, Y., Nakamura, R., Kamiya, K., Nakanishi, S. & Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Commun. 4, 2390 (2013).

    Article  Google Scholar 

  96. Wickramaratne, N. P. & Jaroniec, M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. J. Mater. Chem. A 1, 112–116 (2013).

    Article  CAS  Google Scholar 

  97. Wickramaratne, N. P. & Jaroniec, M. Activated carbon spheres for CO2 adsorption. ACS Appl. Mater. Interfaces 5, 1849–1855 (2013).

    Article  CAS  Google Scholar 

  98. Fang, Y. et al. Dual-pore mesoporous carbon@silica composite core–shell nanospheres for multidrug delivery. Angew. Chem. Int. Ed. 53, 5366–5370 (2014).

    Article  CAS  Google Scholar 

  99. Chen, Y. et al. Colloidal RBC-shaped, hydrophilic, and hollow mesoporous carbon nanocapsules for highly efficient biomedical engineering. Adv. Mater. 26, 4294–4301 (2014).

    Article  CAS  Google Scholar 

  100. Wang, J., Hu, Z., Xu, J. & Zhao, Y. Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater. 6, e84 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) Discovery Project program (DP130104459). J.L. gratefully acknowledges Curtin University Pro Vice-Chancellor Awards for Research Excellence.

Author information

Authors and Affiliations

Authors

Contributions

J.L. and M.J. designed the initial outline of the Review. All authors discussed the contents, conceived figures and tables, wrote specific sections and proofread the article. M.J. coordinated the writing and integrated each author's contributions.

Corresponding author

Correspondence to Mietek Jaroniec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wickramaratne, N., Qiao, S. et al. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Mater 14, 763–774 (2015). https://doi.org/10.1038/nmat4317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing