Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Phonon wave interference and thermal bandgap materials

Abstract

Wave interference modifies phonon velocities and density of states, and in doing so creates forbidden energy bandgaps for thermal phonons. Materials that exhibit wave interference effects allow the flow of thermal energy to be manipulated by controlling the material's thermal conductivity or using heat mirrors to reflect thermal vibrations. The technological potential of these materials, such as enhanced thermoelectric energy conversion and improved thermal insulation, has fuelled the search for highly efficient phonon wave interference and thermal bandgap materials. In this Progress Article, we discuss recent developments in the understanding and manipulation of heat transport. We show that the rational design and fabrication of nanostructures provides unprecedented opportunities for creating wave-like behaviour of heat, leading to a fundamentally new approach for manipulating the transfer of thermal energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bandgap principle.
Figure 2: Thermal bandgaps.
Figure 3: Wave-like heat transport and wave interference in superlattices.
Figure 4: Thermal bandgaps in porous films.
Figure 5: Bandgap control of thermal vibrations.

Similar content being viewed by others

References

  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  2. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  3. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high-room temperature figures of merit. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  4. Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  5. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article  CAS  Google Scholar 

  6. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  7. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical structures. Nature 489, 414–418 (2012).

    Article  CAS  Google Scholar 

  8. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    Article  CAS  Google Scholar 

  9. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  10. Padture, N. P., Gell, M. & Jordan, E. H. Thermal barrier coatings for gas-turbine engine applications. Science 296, 280–284 (2002).

    Article  CAS  Google Scholar 

  11. Costescu, R. M., Cahill, D. G., Fabreguette, F. H., Sechrist, Z. A. & George, S. M. Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science 303, 989–990 (2004).

    Article  CAS  Google Scholar 

  12. Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    Article  CAS  Google Scholar 

  13. Toberer, E. S., Baranowski, L. L. & Dames, C. Advances in thermal conductivity. Annu. Rev. Mater. Res. 42, 179–209 (2012).

    Article  CAS  Google Scholar 

  14. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  15. Cahill, D. G. et al. Nanoscale thermal transport. Appl. Phys. Rev. 1, 011305 (2014).

    Article  CAS  Google Scholar 

  16. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 5, 5147–5162 (2012).

    Article  Google Scholar 

  17. Luckyanova, M. N. et al. Coherent heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  18. Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Mater. 13, 168–172 (2014).

    Article  CAS  Google Scholar 

  19. Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  CAS  Google Scholar 

  20. Zen, N., Puurtinen, T. A., Isotalo, T. J., Chaudhuri, S. & Maasilta, I. J. Engineering thermal conductance using a two-dimensional phononic crystal. Nature Commun. 5, 3435 (2014).

    Article  CAS  Google Scholar 

  21. Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013).

    Article  CAS  Google Scholar 

  22. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College, 1976).

    Google Scholar 

  23. Kittel, C. Introduction to Solid State Physics 8th edn (Wiley, 2005).

    Google Scholar 

  24. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  25. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  26. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ., 2008).

    Google Scholar 

  27. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  CAS  Google Scholar 

  28. Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993).

    Article  CAS  Google Scholar 

  29. Sigalas, M. M. & Economou, E. N. Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993).

    Article  CAS  Google Scholar 

  30. Liu, Z. Y. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  CAS  Google Scholar 

  31. Thomas, E. L., Gorishnyy, T. & Maldovan, M. Phononics: Colloidal crystals go hypersonic. Nature Mater. 5, 773–774 (2006).

    Article  CAS  Google Scholar 

  32. Pennec, Y., Vasseur, J. O., Djafari-Rouhani, B., Dobrzynski, L. & Deymier, P. A. Two-dimensional phononic crystals: Examples and applications. Surf. Sci. Rep. 65, 229–291 (2010).

    Article  CAS  Google Scholar 

  33. Yablonovitch, E. Photonic crystals: Semiconductors of light. Sci. Am. 285, 46–55 (2001).

    Article  CAS  Google Scholar 

  34. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic band gap crystals at near-infrared frequencies. Science 289, 604–606 (2000).

    Article  CAS  Google Scholar 

  35. Ziman, J. M. Electrons and Phonons (Cambridge Univ., 2001).

    Book  Google Scholar 

  36. Henry, A. S. & Chen, G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008).

    Article  Google Scholar 

  37. Esfarjani, K. & Chen, G. Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011).

    Article  CAS  Google Scholar 

  38. Dames, C. & Chen, G. in Thermoelectrics Handbook: Macro to Nano (ed. Rowe, D.) Ch. 42 (CRC Press, 2005).

    Google Scholar 

  39. Tian, Z. et al. Phonon conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations. Phys. Rev. B 85, 184303 (2012).

    Article  CAS  Google Scholar 

  40. Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. & Shakouri, A. Nanoparticle in alloy approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9, 711–715 (2009).

    Article  CAS  Google Scholar 

  41. Garg, J., Bonini, N., Kozinsky, B. & Marzari, N. Role of disorder and anharmonicity in the thermal conductivity of silicon germanium alloys: A first principle study. Phys. Rev. Lett. 106, 045901 (2011).

    Article  CAS  Google Scholar 

  42. Kundu, A., Mingo, N., Broido, D. A. & Stewart, D. A. Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011).

    Article  CAS  Google Scholar 

  43. Wang, Z. & Mingo, N. Diameter dependence of SiGe nanowire thermal conductivity. Appl. Phys. Lett. 97, 101903 (2010).

    Article  CAS  Google Scholar 

  44. Maldovan, M. & Thomas, E. L. Periodic Materials and Interference Lithography: For Photonics, Phononics, and Mechanics (Wiley, 2008).

    Book  Google Scholar 

  45. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  Google Scholar 

  46. Maldovan, M. & Thomas, E. L. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Appl. Phys. Lett. 88, 251907 (2006).

    Article  CAS  Google Scholar 

  47. Chen, G. Phonon wave heat conduction in thin films and superlattices. J. Heat Transf. 121, 945–953 (1999).

    Article  Google Scholar 

  48. Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998).

    Article  CAS  Google Scholar 

  49. Chen, G. & Neagu, M. Thermal conductivity and heat transfer in superlattices. Appl. Phys. Lett. 71, 2761–2763 (1997).

    Article  CAS  Google Scholar 

  50. Tamura, S., Tanaka, Y. & Maris, H. J. Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B 60, 2627–2630 (1999).

    Article  CAS  Google Scholar 

  51. Kiselev, A. A., Kim, K. W. & Stroscio, M. A. Thermal conductivity of Si/Ge superlattices: A realistic model with a diatomic unit cell. Phys. Rev. B 62, 6896–6899 (2000).

    Article  CAS  Google Scholar 

  52. Daly, B. C., Maris, H. J., Imamura, K. & Tamura, S. Molecular dynamics calculation of the thermal conductivity of superlattices. Phys. Rev. B 66, 024301 (2002).

    Article  CAS  Google Scholar 

  53. Landry, E. S. & McGaughey, A. J. H. Effect of interfacial species mixing on phonon transport in semiconductor superlattices. Phys. Rev. B 79, 075316 (2009).

    Article  CAS  Google Scholar 

  54. Termentzidis, K., Chantrenne, P., Duquesne, J.-Y. & Saci, A. Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces. J. Phys. Condens. Matter 22, 475001 (2010).

    Article  CAS  Google Scholar 

  55. Landry, E. S., Hussein, M. I. & McGaughey, A. J. H. Complex superlattice unit cell designs for reduced thermal conductivity. Phys. Rev. B 77, 184302 (2008).

    Article  CAS  Google Scholar 

  56. Garg, J., Bonini, N. & Marzari, N. High thermal conductivity in short-period superlattices. Nano Lett. 11, 5135–5141 (2011).

    Article  CAS  Google Scholar 

  57. Garg, J. & Chen, G. Minimum thermal conductivity in superlattices: A first-principles formalism. Phys. Rev. B 87, 140302 (2013).

    Article  CAS  Google Scholar 

  58. Aksamija, Z. & Knezevic, I. Thermal conductivity of Si1− xGex/Si1− yGey superlattices: Competition between interfacial and internal scattering. Phys. Rev. B 88, 155318 (2013).

    Article  CAS  Google Scholar 

  59. Savic, I., Donadio, D., Gygi, F. & Galli, G. Dimensionality and heat transport in Si–Ge superlattices. Appl. Phys. Lett. 102, 073113 (2013).

    Article  CAS  Google Scholar 

  60. Lin, K. H. & Strachan, A. Thermal transport in SiGe superlattice thin films and nanowires: Effects of specimen and periodic lengths. Phys. Rev. B 87, 115302 (2013).

    Article  CAS  Google Scholar 

  61. Huberman, S. C., Larkin, J. M. & McGaughey, A. J. H. Disruption of superlattice phonons by interfacial mixing. Phys. Rev. B 88, 155311 (2013).

    Article  CAS  Google Scholar 

  62. Tian, Z., Esfarjani, K. & Chen, G. Green's function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014).

    Article  CAS  Google Scholar 

  63. Capinski, W. S. & Maris, H. J. Thermal conductivity of GaAs/AlAs superlattices. Physica B 219–220, 699–701 (1996).

    Article  Google Scholar 

  64. Lee, S. M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of SiGe superlattices. Appl. Phys. Lett. 70, 2957–2959 (1997).

    Article  CAS  Google Scholar 

  65. Capinski, W. S. et al. Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys Rev. B 59, 8105–8113 (1999).

    Article  CAS  Google Scholar 

  66. Borca-Tasciuc, T. et al. Thermal conductivity of symmetrically strained SiGe superlattices. Superlattices Microstructures 28, 199–206 (2000).

    Article  CAS  Google Scholar 

  67. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localization-like behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000).

    Article  CAS  Google Scholar 

  68. Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R. & Goodson, K. E. Thermal characterization of Bi2Te3–Sb2Te3 superlattices. J. Appl. Phys. 90, 763–766 (2001).

    Article  CAS  Google Scholar 

  69. Huxtable, S. T. et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 80, 1737–1739 (2002).

    Article  CAS  Google Scholar 

  70. Pernot, G. et al. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nature Mater. 9, 491–495 (2010).

    Article  CAS  Google Scholar 

  71. Chen, P. et al. Role of surface-segregation-driven intermixing on the thermal transport through planar Si/Ge superlattices. Phys. Rev. Lett. 111, 115901 (2013).

  72. Luckyanova, M. N. et al. Anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Nano Lett. 13, 3973–3979 (2013).

    Article  CAS  Google Scholar 

  73. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Reduction of thermal conductivity in phononic nanomesh structures. Nature Nanotech. 5, 718–721 (2010).

    Article  CAS  Google Scholar 

  74. Hopkins, P. E. et al. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011).

    Article  CAS  Google Scholar 

  75. Tang, J. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010).

    Article  CAS  Google Scholar 

  76. Song, D. & Chen, G. Thermal conductivity of periodic microporous silicon film. Appl. Phys. Lett. 84, 687–689 (2004).

    Article  CAS  Google Scholar 

  77. Jain, A., Yu, Y.-J. & McGaughey, A. J. H. Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm. Phys. Rev. B 87, 195301 (2013).

    Article  CAS  Google Scholar 

  78. Ravichandran, N. K. & Minnich, A. J. Coherent and incoherent thermal transport in nanomeshes. Phys. Rev. B 89, 205432 (2014).

    Article  CAS  Google Scholar 

  79. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article  CAS  Google Scholar 

  80. Winn, J. N., Fink, Y., Fan, S. H. & Joannopoulos, J. D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 23, 1573–1575 (1998).

    Article  CAS  Google Scholar 

  81. Bria, E. & Djafari-Rouhani, B. Omnidirectional elastic band gap in finite lamellar structures. Phys. Rev. E 66, 056609 (2002).

    Article  CAS  Google Scholar 

  82. Manzanares-Martinez, B. et al. Experimental evidence of omnidirectional elastic band gap in finite one-dimensional phononic systems. Appl. Phys. Lett. 85, 154–156 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a start-up fund from the Georgia Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Maldovan.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldovan, M. Phonon wave interference and thermal bandgap materials. Nature Mater 14, 667–674 (2015). https://doi.org/10.1038/nmat4308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4308

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing