Commentary | Published:

New horizons for glass formation and stability

Nature Materials volume 14, pages 542546 (2015) | Download Citation

It has long been thought impossible for pure metals to form stable glasses. Recent work supports earlier evidence of glass formation in pure metals, shows the potential for devices based on rapid glass–crystal phase change, and highlights the lack of an adequate theory for fast crystal growth.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Nature 187, 869–870 (1960).

  2. 2.

    & J. Mater. Sci. 11, 215–223 (1976).

  3. 3.

    & Z. Phys. 138, 109–129 (1954).

  4. 4.

    J. Vac. Sci. Technol. 7, 385–398 (1970).

  5. 5.

    & Mater. Sci. Eng. A 449–451, 34–41 (2007).

  6. 6.

    & Acta Metall. 30, 2135–2139 (1982).

  7. 7.

    & Acta Metall. Mater. 42, 527–537 (1994).

  8. 8.

    , & Phys. Rev. Lett. 49, 1496–1500 (1982).

  9. 9.

    & Acta Metall. Mater. 39, 3237–3249 (1991).

  10. 10.

    , & Acta Metall. 37, 247–255 (1989).

  11. 11.

    & J. Chem. Phys. 140, 214504 (2014).

  12. 12.

    , , , & Nature 512, 177–182 (2014).

  13. 13.

    , , , , & Appl. Phys. Lett. 100, 041909 (2012).

  14. 14.

    Z. Phys. 195, 201–214 (1966).

  15. 15.

    & J. Chem. Phys. 137, 080901 (2012).

  16. 16.

    , & Nature Mater. 12, 139–144 (2013).

  17. 17.

    , , , & J. Chem. Phys. 140, 204504 (2014).

  18. 18.

    , , & J. Alloy Comp. 483, 256–259 (2009).

  19. 19.

    & Appl. Phys. Lett. 98, 251904 (2011).

  20. 20.

    , & Metastable Solids from Undercooled Melts 197–280 (Elsevier, 2007).

  21. 21.

    , , & Model. Simul. Mater. Sci. Eng. 18, 074002 (2010).

  22. 22.

    & Phys. Rev. E 65, 041605 (2002).

  23. 23.

    & Acta Mater. 58, 524–530 (2010).

  24. 24.

    et al. Sci. Rep. 4, 6529 (2014).

  25. 25.

    et al. Mater. Sci. Eng. A 226, 410–414 (1997).

  26. 26.

    Contemp. Phys. 10, 473–488 (1969).

  27. 27.

    Science 267, 1924–1935 (1995).

  28. 28.

    et al. Proc. Natl Acad. Sci. USA 111, 9031–9036 (2014).

  29. 29.

    et al. Phys. Rev. B 83, 014202 (2011).

  30. 30.

    , , , & Nature Mater. 11, 279–283 (2012).

  31. 31.

    et al. J. Appl. Phys. 111, 104308 (2012).

  32. 32.

    , , & Mater. Res. Soc. Bull. 39, 703–710 (2014).

  33. 33.

    & Nature Mater. 6, 824–832 (2007).

  34. 34.

    Phys. Status Solidi B 249, 1843–1850 (2012).

  35. 35.

    et al. Science 336, 1566–1569 (2012).

  36. 36.

    Jpn. J. Appl. Phys. 43(7B), 4695–4699 (2004).

  37. 37.

    , & Adv. Funct. Mater. 23, 2248–2254 (2013).

  38. 38.

    & in Amorphous Metals and Non-Equilibrium Processing (ed. von Allmen, M.) 65–72 (Les Editions de Physique, 1984).

  39. 39.

    et al. Nature Commun. 4, 2371 (2013).

Download references

Acknowledgements

I am particularly grateful to W. L. Johnson, J. Orava and F. Spaepen for their inputs to my thinking, and also to C. A. Angell, M. Baricco, L. Battezzati, M. D. Ediger, S. R. Elliott, J. F. Löffler, M. Salinga, K. Samwer, G. Wilde and M. Zehetbauer for useful discussions. I acknowledge support for visiting positions at the University of Vienna and the University of Turin, during which this Commentary was developed.

Author information

Affiliations

  1. A. Lindsay Greer is in the Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK, and at the WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

    • A. Lindsay Greer

Authors

  1. Search for A. Lindsay Greer in:

Corresponding author

Correspondence to A. Lindsay Greer.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat4292

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing