Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

New horizons for glass formation and stability

It has long been thought impossible for pure metals to form stable glasses. Recent work supports earlier evidence of glass formation in pure metals, shows the potential for devices based on rapid glass–crystal phase change, and highlights the lack of an adequate theory for fast crystal growth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glassy spheres of pure iron.
Figure 2: Glass formation in nanobridges.
Figure 3: Potential energies of supercooled liquid, glassy and amorphous states.
Figure 4: The rates of crystal nucleation and growth in supercooled liquids.
Figure 5: Glass-forming ability in the Ni–Cr–Nb–P–B system shows cusp-like variation with composition.

References

  1. Klement, W. Jr, Willens, R. H. & Duwez, P. Nature 187, 869–870 (1960).

    Article  CAS  Google Scholar 

  2. Davies, H. A. & Hull, J. B. J. Mater. Sci. 11, 215–223 (1976).

    Article  CAS  Google Scholar 

  3. Buckel, W. & Hilsch, R. Z. Phys. 138, 109–129 (1954).

    Article  CAS  Google Scholar 

  4. Behrndt, K. H. J. Vac. Sci. Technol. 7, 385–398 (1970).

    Article  CAS  Google Scholar 

  5. Herlach, D. M. & Galenko, P. K. Mater. Sci. Eng. A 449–451, 34–41 (2007).

    Article  Google Scholar 

  6. Coriell, S. R. & Turnbull, D. Acta Metall. 30, 2135–2139 (1982).

    Article  CAS  Google Scholar 

  7. Aziz, M. J. & Boettinger, W. J. Acta Metall. Mater. 42, 527–537 (1994).

    Article  CAS  Google Scholar 

  8. Broughton, J. Q., Gilmer, G. H. & Jackson, K. A. Phys. Rev. Lett. 49, 1496–1500 (1982).

    Article  CAS  Google Scholar 

  9. Kim, Y. W. & Kelly, T. F. Acta Metall. Mater. 39, 3237–3249 (1991).

    Article  CAS  Google Scholar 

  10. Kim, Y. W., Lin, H. M. & Kelly, T. F. Acta Metall. 37, 247–255 (1989).

    Article  CAS  Google Scholar 

  11. Orava, J. & Greer, A. L. J. Chem. Phys. 140, 214504 (2014).

    Article  CAS  Google Scholar 

  12. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Nature 512, 177–182 (2014).

    Article  CAS  Google Scholar 

  13. An, Q., Luo, S. N., Goddard, W. A., Han, W. Z., Arman, B. & Johnson, W. L. Appl. Phys. Lett. 100, 041909 (2012).

    Article  Google Scholar 

  14. Felsch, W. Z. Phys. 195, 201–214 (1966).

    Article  CAS  Google Scholar 

  15. Ediger, M. D. & Harrowell, P. J. Chem. Phys. 137, 080901 (2012).

    Article  CAS  Google Scholar 

  16. Singh, S., Ediger, M. D. & de Pablo, J. J. Nature Mater. 12, 139–144 (2013).

    Article  CAS  Google Scholar 

  17. Lin, P.-H., Lyubimov, I., Yu, L., Ediger, M. D. & de Pablo, J. J. J. Chem. Phys. 140, 204504 (2014).

    Article  Google Scholar 

  18. Méar, F. O., Doisneau, B., Yavari, A. R. & Greer, A. L. J. Alloy Comp. 483, 256–259 (2009).

    Article  Google Scholar 

  19. Wilde, G. & Rösner, H. Appl. Phys. Lett. 98, 251904 (2011).

    Article  Google Scholar 

  20. Herlach, D. M., Galenko, P. & Holland-Moritz, D. Metastable Solids from Undercooled Melts 197–280 (Elsevier, 2007).

    Google Scholar 

  21. Mendelev, M. I., Rahman, M. J., Hoyt, J. J. & Asta, M. Model. Simul. Mater. Sci. Eng. 18, 074002 (2010).

    Article  Google Scholar 

  22. Celestini, F. & Debierre, J. M. Phys. Rev. E 65, 041605 (2002).

    Article  Google Scholar 

  23. Ashkenazy, Y. & Averback, R. S. Acta Mater. 58, 524–530 (2010).

    Article  CAS  Google Scholar 

  24. Zhang, W. et al. Sci. Rep. 4, 6529 (2014).

    Article  CAS  Google Scholar 

  25. Eckler, K. et al. Mater. Sci. Eng. A 226, 410–414 (1997).

    Article  Google Scholar 

  26. Turnbull, D. Contemp. Phys. 10, 473–488 (1969).

    Article  CAS  Google Scholar 

  27. Angell, C. A. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  28. Na, J. H. et al. Proc. Natl Acad. Sci. USA 111, 9031–9036 (2014).

    Article  CAS  Google Scholar 

  29. Wang, Q. et al. Phys. Rev. B 83, 014202 (2011).

    Article  Google Scholar 

  30. Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. W. Nature Mater. 11, 279–283 (2012).

    Article  CAS  Google Scholar 

  31. Burr, G. W. et al. J. Appl. Phys. 111, 104308 (2012).

    Article  Google Scholar 

  32. Raoux, S., Xiong, F., Wuttig, M. & Pop, E. Mater. Res. Soc. Bull. 39, 703–710 (2014).

    Article  Google Scholar 

  33. Wuttig, M. & Yamada, N. Nature Mater. 6, 824–832 (2007).

    Article  CAS  Google Scholar 

  34. Wuttig, M. Phys. Status Solidi B 249, 1843–1850 (2012).

    Article  CAS  Google Scholar 

  35. Loke, D. et al. Science 336, 1566–1569 (2012).

    Article  CAS  Google Scholar 

  36. Ovshinsky, S. R. Jpn. J. Appl. Phys. 43(7B), 4695–4699 (2004).

    Article  Google Scholar 

  37. Wright, C. D., Hosseini, P. & Diosdado, J. A. V. Adv. Funct. Mater. 23, 2248–2254 (2013).

    Article  CAS  Google Scholar 

  38. Spaepen, F. & Lin, C. J. in Amorphous Metals and Non-Equilibrium Processing (ed. von Allmen, M.) 65–72 (Les Editions de Physique, 1984).

    Google Scholar 

  39. Salinga, M. et al. Nature Commun. 4, 2371 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

I am particularly grateful to W. L. Johnson, J. Orava and F. Spaepen for their inputs to my thinking, and also to C. A. Angell, M. Baricco, L. Battezzati, M. D. Ediger, S. R. Elliott, J. F. Löffler, M. Salinga, K. Samwer, G. Wilde and M. Zehetbauer for useful discussions. I acknowledge support for visiting positions at the University of Vienna and the University of Turin, during which this Commentary was developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lindsay Greer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greer, A. New horizons for glass formation and stability. Nature Mater 14, 542–546 (2015). https://doi.org/10.1038/nmat4292

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing