Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring surface dislocation nucleation in defect-scarce nanostructures

Abstract

Linear defects in crystalline materials, known as dislocations, are central to the understanding of plastic deformation and mechanical strength, as well as control of performance in a variety of electronic and photonic materials. Despite nearly a century of research on dislocation structure and interactions, measurements of the energetics and kinetics of dislocation nucleation have not been possible, as synthesizing and testing pristine crystals absent of defects has been prohibitively challenging. Here, we report experiments that directly measure the surface dislocation nucleation strengths in high-quality 〈110〉 Pd nanowhiskers subjected to uniaxial tension. We find that, whereas nucleation strengths are weakly size- and strain-rate-dependent, a strong temperature dependence is uncovered, corroborating predictions that nucleation is assisted by thermal fluctuations. We measure atomic-scale activation volumes, which explain both the ultrahigh athermal strength as well as the temperature-dependent scatter, evident in our experiments and well captured by a thermal activation model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental method and verification of elasticity.
Figure 2: In situ TEM tensile testing shows dislocation nucleation and failure occurring in short succession.
Figure 3: Representative stress–strain behaviour shows strong temperature dependence of the nucleation strength and a similar deformation morphology irrespective of testing conditions.
Figure 4: Weak size dependence of nucleation strength.
Figure 5: Strain rate and temperature dependence, and statistical analysis of benchmark experiments.
Figure 6: Comparison between the experimental temperature-dependent nucleation strength distribution and the analytical model for the probability distribution.

Similar content being viewed by others

References

  1. Hirsch, P. B., Horne, R. W. & Whelan, M. J. LXVIII Direct observations of the arrangement and motion of dislocations in aluminium. Phil. Mag. 1, 677–684 (1956).

    Article  CAS  Google Scholar 

  2. Taylor, G. I. The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. Lond. A 145, 362–387 (1934).

    Article  CAS  Google Scholar 

  3. Orowan, E. Zur Kristallplastizität. I. Z. Phys. 89, 605–613 (1934).

    Article  Google Scholar 

  4. Polanyi, M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 89, 660–664 (1934).

    Article  CAS  Google Scholar 

  5. Frank, F. C. The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48–54 (1949).

    Article  Google Scholar 

  6. Hirth, J. P. & Pond, R. C. Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater. 44, 4749–4763 (1996).

    Article  CAS  Google Scholar 

  7. Swann, P. R. Dislocation substructure vs transgranular stress corrosion susceptibility of single phase alloys. Corrosion 19, 102t–114t (1963).

    Article  CAS  Google Scholar 

  8. Farvacque, J. L., Douehan, J. C., von Alpen, U. & Gmelin, E. Screw-dislocation-induced scattering processes and acceptor states in Te. Phys. Status Solidi 79, 763–773 (1977).

    Article  CAS  Google Scholar 

  9. Lee, M. L., Fitzgerald, E. A., Bulsara, M. T., Currie, M. T. & Lochtefeld, A. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101 (2005).

    Article  Google Scholar 

  10. Nam, S-W. et al. Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires. Science 336, 1561–1566 (2012).

    Article  CAS  Google Scholar 

  11. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  12. Richter, G. et al. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition. Nano Lett. 9, 3048–3052 (2009).

    Article  CAS  Google Scholar 

  13. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).

    Article  Google Scholar 

  14. Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011).

    Article  CAS  Google Scholar 

  15. Li, J. et al. Diffusive molecular dynamics and its application to nanoindentation and sintering. Phys. Rev. B 84, 054103 (2011).

    Article  Google Scholar 

  16. Sun, J. et al. Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nature Mater. 13, 1007–1012 (2014).

    Article  CAS  Google Scholar 

  17. Schuh, C. A., Mason, J. K. & Lund, A. C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater. 4, 617–621 (2005).

    Article  CAS  Google Scholar 

  18. Oh, S. H., Legros, M., Kiener, D. & Dehm, G. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Mater. 8, 95–100 (2009).

    Article  CAS  Google Scholar 

  19. Zheng, H. et al. Discrete plasticity in sub-10-nm-sized gold crystals. Nature Commun. 1, 144 (2010).

    Article  Google Scholar 

  20. Jennings, A. T., Li, J. & Greer, J. R. Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627–5637 (2011).

    Article  CAS  Google Scholar 

  21. Lu, Y., Song, J., Huang, J. Y. & Lou, J. Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. Nano Res. 4, 1261–1267 (2011).

    Article  CAS  Google Scholar 

  22. Bei, H., Gao, Y., Shim, S., George, E. & Pharr, G. Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys. Rev. B 77, 060103 (2008).

    Article  Google Scholar 

  23. Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. & Wyrobek, J. T. Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585–3598 (1996).

    Article  CAS  Google Scholar 

  24. Li, J., Van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  CAS  Google Scholar 

  25. Warner, D. H. & Curtin, W. A. Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals. Acta Mater. 57, 4267–4277 (2009).

    Article  CAS  Google Scholar 

  26. Jennings, A. T. et al. Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater. 61, 2244–2259 (2013).

    Article  CAS  Google Scholar 

  27. Ryu, S., Kang, K. & Cai, W. Entropic effect on the rate of dislocation nucleation. Proc. Natl Acad. Sci. USA 108, 5174–5178 (2011).

    Article  CAS  Google Scholar 

  28. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  29. Bahr, D. F., Wilson, D. E. & Crowson, D. A. Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269–2275 (2011).

    Article  Google Scholar 

  30. Ngan, A. H. W., Zuo, L. & Wo, P. C. Size dependence and stochastic nature of yield strength of micron-sized crystals: A case study on Ni3Al. Proc. R. Soc. Lond. A 462, 1661–1681 (2006).

    Article  CAS  Google Scholar 

  31. Chen, L., Richter, G., Sullivan, J. & Gianola, D. Lattice anharmonicity in defect-free Pd nanowhiskers. Phys. Rev. Lett. 109, 125503 (2012).

    Article  Google Scholar 

  32. Kamran, S., Chen, K. & Chen, L. Ab initio examination of ductility features of fcc metals. Phys. Rev. B 79, 024106 (2009).

    Article  Google Scholar 

  33. Chisholm, C. et al. Dislocation starvation and exhaustion hardening in Mo alloy nanofibers. Acta Mater. 60, 2258–2264 (2012).

    Article  CAS  Google Scholar 

  34. Sedlmayr, A. et al. Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers. Acta Mater. 60, 3985–3993 (2012).

    Article  CAS  Google Scholar 

  35. Masumoto, H., Saitô, H. & Kadowaki, S. Young’s modulus of single crystals of palladium at high temperatures. Sci. Rep. Res. Inst. Tohoku Univ. A 19, 294–303 (1967).

    Google Scholar 

  36. Zhu, T., Li, J., Samanta, A., Leach, A. & Gall, K. Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  Google Scholar 

  37. Ryu, S., Kang, K. & Cai, W. Predicting the dislocation nucleation rate as a function of temperature and stress. J. Mater. Res. 26, 2335–2354 (2011).

    Article  CAS  Google Scholar 

  38. Kocks, U. F., Argon, A. & Ashby, M. F. Thermodynamics and Kinetics of Slip (Argonne National Laboratory, 1973).

    Google Scholar 

  39. Mason, J., Lund, A. & Schuh, C. Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).

    Article  Google Scholar 

  40. Zuo, L. & Ngan, A. H. W. Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars. Phil. Mag. Lett. 86, 355–365 (2006).

    Article  CAS  Google Scholar 

  41. Foiles, S., Baskes, M. & Daw, M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986).

    Article  CAS  Google Scholar 

  42. Liu, C. L., Cohen, J. M., Adams, J. B. & Voter, A. F. EAM study of surface self-diffusion. Surf. Sci. 253, 334–344 (1991).

    Article  CAS  Google Scholar 

  43. Brochard, S., Hirel, P., Pizzagalli, L. & Godet, J. Elastic limit for surface step dislocation nucleation in face-centered cubic metals: Temperature and step height dependence. Acta Mater. 58, 4182–4190 (2010).

    Article  CAS  Google Scholar 

  44. Murphy, K. F., Chen, L. Y. & Gianola, D. S. Effect of organometallic clamp properties on the apparent diversity of tensile response of nanowires. Nanotechnology 24, 235704 (2013).

    Article  Google Scholar 

  45. Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nature Mater. 5, 697–702 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation through a CAREER Award #DMR-1056293. We thank S. Terrab (University of Colorado Boulder) for technical expertise and project support. We are also grateful to V. Vitek for critical reading of our manuscript and insightful comments. The authors also thank the support of the staff and facilities at the Penn Nanoscale Characterization Facility at the University of Pennsylvania. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-programme laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Contributions

L.Y.C. and D.S.G. designed the experiments. L.Y.C. implemented the low-temperature testing set-up. L.Y.C., M-r.H. and J.S. conducted mechanical experiments and material characterization. G.R. synthesized the materials and conducted material characterization. L.Y.C. and D.S.G. developed the analytical model and performed analysis of the data. D.S.G. supervised the work. L.Y.C. and D.S.G. wrote the initial manuscript with input from all authors. All authors contributed to discussion of the results, provided input on the manuscript, and approved the final version.

Corresponding author

Correspondence to Daniel S. Gianola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1543 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., He, Mr., Shin, J. et al. Measuring surface dislocation nucleation in defect-scarce nanostructures. Nature Mater 14, 707–713 (2015). https://doi.org/10.1038/nmat4288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing