Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2

Abstract

Organic semiconductors are attracting increasing interest as flexible thermoelectric materials owing to material abundance, easy processing and low thermal conductivity. Although progress in p-type polymers and composites has been reported, their n-type counterpart has fallen behind owing to difficulties in n-type doping of organic semiconductors. Here, we present an approach to synthesize n-type flexible thermoelectric materials through a facile electrochemical intercalation method, fabricating a hybrid superlattice of alternating inorganic TiS2 monolayers and organic cations. Electrons were externally injected into the inorganic layers and then stabilized by organic cations, providing n-type carriers for current and energy transport. An electrical conductivity of 790 S cm−1 and a power factor of 0.45 mW m−1 K−2 were obtained for a hybrid superlattice of TiS2/[(hexylammonium)x(H2O)y(DMSO)z], with an in-plane lattice thermal conductivity of 0.12 ± 0.03 W m−1 K−1, which is two orders of magnitude smaller than the thermal conductivities of the single-layer and bulk TiS2. High power factor and low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of 0.28 at 373 K, which might find application in wearable electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of TiS2-based inorganic/organic superlattices.
Figure 2: Significantly enhanced in-plane thermoelectric figure of merit ZT.
Figure 3: Molecular dynamics simulations of the thermal conductivities.
Figure 4: Flexibility tests.

Similar content being viewed by others

References

  1. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  2. Janata, J. & Josowicz, M. Conducting polymers in electronic chemical sensors. Nature Mater. 2, 19–24 (2003).

    Article  CAS  Google Scholar 

  3. Ouyang, J. Y., Chu, C. W., Szmanda, C. R., Ma, L. P. & Yang, Y. Programmable polymer thin film and non-volatile memory device. Nature Mater. 3, 918–922 (2004).

    Article  CAS  Google Scholar 

  4. Burroughes, J. H. et al. Light-emitting-diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  5. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  CAS  Google Scholar 

  6. Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Mater. 10, 429–433 (2011).

    Article  CAS  Google Scholar 

  7. Kim, G. H., Shao, L., Zhang, K. & Pipe, K. P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature Mater. 12, 719–723 (2013).

    Article  CAS  Google Scholar 

  8. Lu, Z. Y. et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10, 3551–3554 (2014).

    Article  CAS  Google Scholar 

  9. Yadav, A., Pipe, K. P. & Shtein, M. Fiber-based flexible thermoelectric power generator. J. Power Sources 175, 909–913 (2008).

    Article  CAS  Google Scholar 

  10. Barry, J. J., Hughes, H. P., Klipstein, P. C. & Friend, R. H. Stoichiometry effects in angle-resolved photoemission and transport studies of Ti1+xS2 . J. Phys. 16, 393–402 (1983).

    CAS  Google Scholar 

  11. Schollho, R. & Weiss, A. Cation-exchange reactions and layer solvate complexes of ternary phases MxMoS2 . J. Less-Common Met. 36, 229–236 (1974).

    Article  Google Scholar 

  12. Li, Y. D. D., Li, X. L. L., He, R. R. R., Zhu, J. & Deng, Z. X. X. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411–1416 (2002).

    Article  CAS  Google Scholar 

  13. Ferrari, A. M., Szieberth, D., Zicovich-Wilson, C. M. & Demichelis, R. Anatase(001) 3 ML nanotubes, the first TiO2 nanotube with negative strain energies: A DFT prediction. J. Phys. Chem. Lett. 1, 2854–2857 (2010).

    Article  CAS  Google Scholar 

  14. Tibbetts, K., Doe, R. & Ceder, G. Polygonal model for layered inorganic nanotubes. Phys. Rev. B 80, 014102 (2009).

    Article  Google Scholar 

  15. Kukkonen, C. A. et al. Transport and optical-properties of Ti1+xS2 . Phys. Rev. B 24, 1691–1709 (1981).

    Article  CAS  Google Scholar 

  16. Fang, C. M., deGroot, R. A. & Haas, C. Bulk and surface electronic structure of 1T-TiS2 and 1T-TiSe2 . Phys. Rev. B 56, 4455–4463 (1997).

    Article  CAS  Google Scholar 

  17. Schollho, R. & Meyer, H. Cathodic reduction of layered transition-metal chalcogenides. Mater. Res. Bull. 9, 1237–1246 (1974).

    Article  Google Scholar 

  18. Jena, D. & Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007).

    Article  Google Scholar 

  19. Sun, Y. M. et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 24, 932–937 (2012).

    Article  CAS  Google Scholar 

  20. Tynell, T., Terasaki, I., Yamauchi, H. & Karppinen, M. Thermoelectric characteristics of (Zn, Al)O/hydroquinone superlattices. J. Mater. Chem. A 1, 13619–13624 (2013).

    Article  CAS  Google Scholar 

  21. Zawilski, B. M., Littleton, R. T. & Tritt, T. M. Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples. Rev. Sci. Instrum. 72, 1770–1774 (2001).

    Article  CAS  Google Scholar 

  22. Imai, H., Shimakawa, Y. & Kubo, Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B 64, 241104 (2001).

    Article  Google Scholar 

  23. Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nature Mater. 11, 502–506 (2012).

    Article  CAS  Google Scholar 

  24. Ong, W. L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nature Mater. 12, 410–415 (2013).

    Article  CAS  Google Scholar 

  25. Losego, M. D., Blitz, I. P., Vaia, R. A., Cahill, D. G. & Braunt, P. V. Ultralow thermal conductivity in organoclay nanolaminates synthesized via simple self-assembly. Nano Lett. 13, 2215–2219 (2013).

    Article  CAS  Google Scholar 

  26. Liu, J. et al. Ultralow thermal conductivity of atomic/molecular layer-deposited hybrid inorganic/organic zincone thin films. Nano Lett. 13, 5594–5599 (2013).

    Article  CAS  Google Scholar 

  27. Thomas, J. A., Turney, J. E., Iutzi, R. M., Amon, C. H. & McGaughey, A. J. Predicting phonon dispersion relations and lifetimes from the spectral energy density. Phys. Rev. B 81, 081411 (2010).

    Article  Google Scholar 

  28. Harshman, D. R. & Mills, A. P. Concerning the nature of high-T C superconductivity—survey of experimental properties and implications for interlayer coupling. Phys. Rev. B 45, 10684–10712 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Sasai for polarized FTIR measurements. C.W. acknowledges financial support from a Murata Science Foundation Research Grant, a Thermal and Electrical Energy Technology Foundation Research Grant, Takahashi Industrial and Economic Research Foundation and JSPS KAKENHI Grant Number 26820295. K.Koumoto acknowledges financial support from JSPS KAKENHI Grant Number 25289226 and TherMAT. G.J.S. acknowledges support from AFOSR-MURI and DOE-EFRC (S3TEC) award number DE-SC0001299. X.G. and R.Y. acknowledge the partial support for this work from the NSF CAREER award (0846561) and AFOSR (FA9550-11-1-0109). The simulation work used the Janus supercomputer, supported by NSF (0821794).

Author information

Authors and Affiliations

Authors

Contributions

C.W. and K.Koumoto initiated the concepts. C.W. designed the experiments. C.W., F.D., T.I., Y.W., H.S., M.K., K.Koga and K.Y. conducted the experiments. X.G. and R.Y. performed the molecular dynamics simulations. C.W., X.G., G.J.S., R.Y. and K.Koumoto analysed the data and wrote the manuscript. All of the authors contributed to manuscript preparation.

Corresponding authors

Correspondence to Chunlei Wan or Kunihito Koumoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2664 kb)

Supplementary Information

Supplementary Movie 1 (MPG 3994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Gu, X., Dang, F. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nature Mater 14, 622–627 (2015). https://doi.org/10.1038/nmat4251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing