Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hybrid optical–electrical detection of donor electron spins with bound excitons in silicon


Electrical detection of spins is an essential tool for understanding the dynamics of spins, with applications ranging from optoelectronics1,2 and spintronics3, to quantum information processing4,5,6,7,8. For electron spins bound to donors in silicon, bulk electrically detected magnetic resonance has relied on coupling to spin readout partners such as paramagnetic defects4,5 or conduction electrons6,7,8, which fundamentally limits spin coherence times. Here we demonstrate electrical detection of donor electron spin resonance in an ensemble by transport through a silicon device, using optically driven donor-bound exciton transitions9,10. We measure electron spin Rabi oscillations, and obtain long electron spin coherence times, limited only by the donor concentration11. We also experimentally address critical issues such as non-resonant excitation, strain, and electric fields, laying the foundations for realizing a single-spin readout method with relaxed magnetic field and temperature requirements compared with spin-dependent tunnelling12,13, enabling donor-based technologies such as quantum sensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrically detected D0X spectroscopy in a silicon device.
Figure 2: Electrically detected spin resonance using D0X.
Figure 3: ESR detection under D0X laser excitation.
Figure 4: Strain-induced shifts in D0X transition energies, ΔE[D0X].


  1. Malissa, H. et al. Room-temperature coupling between electrical current and nuclear spins in OLEDs. Science 345, 1487–1490 (2014).

    Article  CAS  Google Scholar 

  2. Algasinger, M. et al. Improved black silicon for photovoltaic applications. Adv. Energy Mater. 3, 1068–1074 (2013).

    Article  CAS  Google Scholar 

  3. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurements and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  4. Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nature Phys. 2, 835–838 (2006).

    Article  CAS  Google Scholar 

  5. Paik, S. Y., Lee, S. Y., Baker, W. J., McCamey, D. R. & Boehme, C. T1 and T2 spin relaxation time limitations of phosphorus donor electron near crystalline silicon to silicon dioxide interface defects. Phys. Rev. B 81, 075214 (2010).

    Article  Google Scholar 

  6. McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Electronic spin storage in an electrically readable nuclear spin memory with a lifetime >100 seconds. Science 330, 1652–1656 (2010).

    Article  CAS  Google Scholar 

  7. Lo, C. C. et al. Electrically detected magnetic resonance of neutral donors interacting with a two-dimensional electron gas. Phys. Rev. Lett. 106, 207601 (2011).

    Article  CAS  Google Scholar 

  8. Lo, C. C., Weis, C. D., van Tol, J., Bokor, J. & Schenkel, T. All-electrical nuclear spin polarization of donors in silicon. Phys. Rev. Lett. 110, 057601 (2013).

    Article  CAS  Google Scholar 

  9. Steger, M. et al. Quantum information storage for over 180s using donor spins in a 28Si “semiconductor vacuum”. Science 336, 1280–1283 (2012).

    Article  CAS  Google Scholar 

  10. Saeedi, K. et al. Room-temperature qubit storage exceeding 39 minutes using ionized donors in 28Si. Science 342, 830–833 (2013).

    Article  CAS  Google Scholar 

  11. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    Article  CAS  Google Scholar 

  12. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  CAS  Google Scholar 

  13. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article  CAS  Google Scholar 

  14. Kane, B. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  15. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  CAS  Google Scholar 

  16. Taylor, J. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Article  CAS  Google Scholar 

  17. Schmid, W. Auger lifetimes for excitons bound to neutral donors and acceptors in Si. Phys. Status Solidi B 84, 529–540 (1977).

    Article  CAS  Google Scholar 

  18. Yang, A. et al. Simultaneous sub second hyper polarization of the nuclear and electron spins of phosphorus in silicon by optical pumping of exciton transitions. Phys. Rev. Lett. 102, 257401 (2009).

    Article  CAS  Google Scholar 

  19. Haynes, J. R. Experimental proof of the existence of a new electronic complex in silicon. Phys. Rev. Lett. 4, 361 (1960).

    Article  CAS  Google Scholar 

  20. Yang, A. et al. High-resolution photoluminescence measurement of the isotopic-mass dependence of the lattice parameter of silicon. Phys. Rev. B 77, 113203 (2008).

    Article  Google Scholar 

  21. Wilson, D. K. & Feher, G. Electron spin resonance experiments on donors in silicon. III. Investigation of excited states by the application of uniaxial stress and their importance in relaxation processes. Phys. Rev. 124, 1068–1083 (1961).

    Article  CAS  Google Scholar 

  22. Feher, G. Electron spin resonance experiments on donors in silicon. I. Electronic structure of donors by electron nuclear double resonance technique. Phys. Rev. 114, 1219–1244 (1959).

    Article  CAS  Google Scholar 

  23. Kopf, A. & Lassmann, K. Linear Stark and nonlinear Zeeman coupling to the ground state of effective mass acceptors in silicon. Phys. Rev. Lett. 69, 1580–1583 (1992).

    Article  CAS  Google Scholar 

  24. Hoehne, F., Dreher, L., Huebl, H., Stutzmann, M. & Brandt, M. S. Electrical detection of coherent nuclear spin oscillations in phosphorus-doped silicon using pulsed endor. Phys. Rev. Lett. 106, 187601 (2011).

    Article  Google Scholar 

  25. Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  CAS  Google Scholar 

  26. Thorbeck, T. & Zimmerman, N. M. Formation of strain-induced quantum dots in gated semiconductor nanostructures. Preprint at (2014)

  27. Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–95 (2013).

    Article  CAS  Google Scholar 

  28. Sleiter, D. et al. Quantum hall charge sensor for single-donor nuclear spin detection in silicon. New J. Phys. 12, 093028 (2010).

    Article  Google Scholar 

  29. Fuhrer, A., Füchsle, M., Reusch, T. C. G., Weber, B. & Simmons, M. Y. Atomic-scale, all epitaxial in-plane gated donor quantum dot in silicon. Nano Lett. 9, 707–710 (2009).

    Article  CAS  Google Scholar 

  30. Thewalt, M. L. W. & Rostworowski, J. A. Effects of uniaxial stress on the luminescence lines due to multiexciton complexes bound to phosphorus in silicon. Phys. Rev. Lett. 41, 808–812 (1978).

    Article  CAS  Google Scholar 

Download references


We thank A. M. Tyryshkin for useful discussions. This research is supported by the EPSRC through the Materials World Network (EP/I035536/1) and UNDEDD project (EP/K025945/1) as well as by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) through grant agreements No. 279781 (ERC) and 318397. Work at Princeton is supported by NSF through Materials World Network (DMR-1107606) and through the Princeton MRSEC (DMR-01420541). C.C.L. is supported by the Royal Commission for the Exhibition of 1851. J.J.L.M. is supported by the Royal Society.

Author information

Authors and Affiliations



C.C.L., M.U., M.F.G-Z. and J.J.L.M. conceived and designed the experiments. M.L.W.T. and S.A.L. provided the silicon samples. M.U. fabricated the silicon device, and the experiments were carried out by C.C.L., M.U. and P.R. C.C.L. developed the strain model for D0X and J.M. performed the strain simulations. All authors discussed the results. C.C.L. and J.J.L.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to C. C. Lo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, C., Urdampilleta, M., Ross, P. et al. Hybrid optical–electrical detection of donor electron spins with bound excitons in silicon. Nature Mater 14, 490–494 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing