Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias


Rational material design can accelerate the discovery of materials with improved functionalities1. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties2. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn–Pt–Ga, a giant exchange bias (EB) of more than 3 T and a large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. Our design approach is also demonstrated on a second material with a magnetic transition above room temperature, Mn–Fe–Ga, exemplifying the universality of the concept and the feasibility of room-temperature applications. These findings may lead to the development of magneto-electronic devices and rare-earth-free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of a compensated magnetic state.
Figure 2: Compensated ferrimagnetic state in Mn–Pt–Ga.
Figure 3: Hysteresis loops in Mn–Pt–Ga.
Figure 4: Exchange bias and coercive fields for Mn–Pt–Ga and Mn–Fe–Ga.


  1. 1

    Eberhart, M. E. & Clougherty, D. P. Looking for design in materials design. Nature Mater. 3, 659–661 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  4. 4

    Nogués, J. et al. Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005).

    Article  Google Scholar 

  5. 5

    Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003).

    CAS  Article  Google Scholar 

  6. 6

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nature Mater. 9, 579–585 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010).

    CAS  Article  Google Scholar 

  8. 8

    Lage, E. et al. Exchange biasing of magnetoelectric composites. Nature Mater. 11, 523–529 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Gider, S., Runge, B. U., Marley, A. C. & Parkin, S. S. P. The magnetic stability of spin-dependent tunneling devices. Science 281, 797–799 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Fernandez-Outon, L. E. et al. Large exchange bias IrMn/CoFe for magnetic tunnel junctions. IEEE Trans. Magn. 44, 2824–2827 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Malozemoff, A. P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Kuch, W. et al. Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness. Nature Mater. 5, 128–133 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Miltènyi, P. et al. Diluted antiferromagnets in exchange bias: Proof of the domain state model. Phys. Rev. Lett. 84, 4224–4227 (2000).

    Article  Google Scholar 

  14. 14

    Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Takano, K., Kodama, R. H., Berkowitz, A. E., Cao, W. & Thomas, G. Interfacial uncompensated antiferromagnetic spins: Role in unidirectional anisotropy in polycrystalline Ni81Fe19/CoO bilayers. Phys. Rev. Lett. 79, 1130–1133 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Kodama, R. H., Makhlouf, S. A. & Berkowitz, A. E. Finite size effects in antiferromagnetic NiO nanoparticles. Phys. Rev. Lett. 79, 1393–1396 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Ali, M., Marrows, C. H. & Hickey, B. J. Onset of exchange bias in ultrathin antiferromagnetic layers. Phys. Rev. B 67, 172405 (2003).

    Article  Google Scholar 

  18. 18

    Wadley, P. et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nature Commun. 4, 2322 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Soh, Y. & Kummamuru, R. K. Spintronics in antiferromagnets. Phil. Trans. R. Soc. A 369, 3646–3657 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Pickett, W. E. Single spin superconductivity. Phys. Rev. Lett. 77, 3185–3188 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Kainuma, R. et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541–545 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Wurmehl, S., Kandpal, H. C., Fecher, G. H. & Felser, C. Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys. Condens. Matter 18, 6171–6181 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Chadov, S., Kiss, J. & Felser, C. Improving spin-transport by disorder. Adv. Funct. Mater. 23, 832–838 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Kurt, H. et al. Cubic Mn2Ga thin films: Crossing the spin gap with ruthenium. Phys. Rev. Lett. 112, 027201 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Nayak, A. K. et al. Large zero-field cooled exchange-bias in bulk Mn2PtGa. Phys. Rev. Lett. 110, 127204 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Rode, K. et al. Site-specific order and magnetism in tetragonal Mn3Ga thin films. Phys. Rev. B 87, 184429 (2013).

    Article  Google Scholar 

  30. 30

    Leighton, C., Nogués, J., Jönsson-Åkerman, B. J. & Schuller, I. K. Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration. Phys. Rev. Lett. 84, 3466–3469 (2000).

    CAS  Article  Google Scholar 

Download references


We thank J. A. Mydosh and E. Kampert for valuable discussions on the present work. This work was financially supported by the Deutsche Forschungsgemeinschaft DFG (Projects No. TP 1.2-A and No. 2.3-A of Research Unit FOR 1464 ASPIMATT) and by the ERC Advanced Grant No. (291472) ‘Idea Heusler’. We acknowledge the support of the High Magnetic Field Laboratory Dresden (HLD) at HZDR and High Field Magnet Laboratory Nijmegen (HFML-RU/FOM), members of the European Magnetic Field Laboratory (EMFL).

Author information




All authors contributed substantially to this work.

Corresponding authors

Correspondence to Ajaya K. Nayak or Claudia Felser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2877 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nayak, A., Nicklas, M., Chadov, S. et al. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nature Mater 14, 679–684 (2015).

Download citation

Further reading