Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids

Abstract

Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting1, wavelength downconversion in light-emitting diodes2 (LEDs), and optical biosensing schemes3. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells4, non-contact chromophore pumping from a proximal LED5, and markedly reduced gain thresholds6. However, the fastest reported FRET time constants involving spherical quantum dots (0.12–1 ns; refs 7, 8, 9) do not outpace biexciton Auger recombination (0.01–0.1 ns; ref. 10), which impedes multiexciton-driven applications including electrically pumped lasers11 and carrier-multiplication-enhanced photovoltaics12,13. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions14 exhibit intense optical transitions14 and hundreds-of-picosecond Auger recombination15,16, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (6–23 ps, presumably for co-facial arrangements) can occur 15–50 times faster than Auger recombination15,16 and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Static characterizations of NPLs for FRET.
Figure 2: Dynamic optical measurements of FRET in binary CdSe NPL solids.
Figure 3: Modelling of NPL–NPL energy transfer.
Figure 4: Multiexcitonic energy transfer.

Similar content being viewed by others

References

  1. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  2. Bae, W. K. et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett. 10, 2368–2373 (2010).

    Article  CAS  Google Scholar 

  3. Clapp, A. R., Medintz, I. L. & Mattoussi, H. Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7, 47–57 (2006).

    Article  CAS  Google Scholar 

  4. Kramer, I. J., Levina, L., Debnath, R., Zhitomirsky, D. & Sargent, E. H. Solar cells using quantum funnels. Nano Lett. 11, 3701–3706 (2011).

    Article  CAS  Google Scholar 

  5. Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    Article  CAS  Google Scholar 

  6. Berggren, M., Dodabalapur, A., Slusher, R. E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997).

    Article  CAS  Google Scholar 

  7. Achermann, M., Petruska, M. A., Crooker, S. A. & Klimov, V. I. Picosecond energy transfer in quantum dot Langmuir–Blodgett nanoassemblies. J. Phys. Chem. B 107, 13782–13787 (2003).

    Article  CAS  Google Scholar 

  8. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    Article  CAS  Google Scholar 

  9. Franzl, T. et al. Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Appl. Phys. Lett. 84, 2904–2906 (2004).

    Article  CAS  Google Scholar 

  10. Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D. & Klimov, V. I. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 102, 177404 (2009).

    Article  Google Scholar 

  11. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  12. Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 5, 285–316 (2014).

    Article  CAS  Google Scholar 

  13. Smith, C. & Binks, D. Multiple exciton generation in colloidal nanocrystals. Nanomaterials 4, 19–45 (2013).

    Article  Google Scholar 

  14. Ithurria, S. & Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 130, 16504–16505 (2008).

    Article  CAS  Google Scholar 

  15. Kunneman, L. T. et al. Bimolecular Auger recombination of electron–hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 4, 3574–3578 (2013).

    Article  CAS  Google Scholar 

  16. She, C. et al. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 14, 2772–2777 (2014).

    Article  CAS  Google Scholar 

  17. Chuang, C-H. M., Brown, P. R., Bulović, V. & Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Mater. 13, 796–801 (2014).

    Article  CAS  Google Scholar 

  18. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  CAS  Google Scholar 

  19. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G. & Bulovic, V. Electroluminescence from a mixed red–green–blue colloidal quantum dot monolayer. Nano Lett. 7, 2196–2200 (2007).

    Article  CAS  Google Scholar 

  20. Van Patten, P. G. Enhancement of optical gain in semiconductor nanocrystals through energy transfer. J. Phys. Chem. C 112, 10622–10631 (2008).

    Article  CAS  Google Scholar 

  21. Kagan, C. R., Murray, C. B., Nirmal, M. & Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517–1520 (1996).

    Article  CAS  Google Scholar 

  22. Halivni, S., Sitt, A., Hadar, I. & Banin, U. Effect of nanoparticle dimensionality on fluorescence resonance energy transfer in nanoparticle–dye conjugated systems. ACS Nano 6, 2758–2765 (2012).

    Article  CAS  Google Scholar 

  23. Hernández-Martínez, P. L., Govorov, A. O. & Demir, H. V. Generalized theory of Förster-type nonradiative energy transfer in nanostructures with mixed dimensionality. J. Phys. Chem. C 117, 10203–10212 (2013).

    Article  Google Scholar 

  24. Sitt, A. et al. Analysis of shape and dimensionality effects on fluorescence resonance energy transfer from nanocrystals to multiple acceptors. J. Phys. Chem. C 117, 22186–22197 (2013).

    Article  CAS  Google Scholar 

  25. Kos, Š., Achermann, M., Klimov, V. & Smith, D. Different regimes of Förster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals. Phys. Rev. B 71, 205309 (2005).

    Article  Google Scholar 

  26. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  27. COMSOL Multiphysics Modeling Guide (COMSOL AB, 2005)

  28. Davies, J. H. The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1998).

    Google Scholar 

  29. Bouet, C. et al. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 25, 639–645 (2013).

    Article  CAS  Google Scholar 

  30. Achtstein, A. W. et al. Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 12, 3151–3157 (2012).

    Article  CAS  Google Scholar 

  31. Pelton, M., Ithurria, S., Schaller, R. D., Dolzhnikov, D. S. & Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 12, 6158–6163 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. C.E.R. acknowledges support by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0824162. D.V.T. acknowledges support by the NSF MRSEC Program under Award Number DMR 14-20709 and thanks the II-VI Foundation and Keck Foundation. H.Z. and A.O.G. acknowledge support by the US Army Research Office under grant number W911NF-12-1-0407 and the Volkswagen Foundation (Germany).

Author information

Authors and Affiliations

Authors

Contributions

Sample synthesis and electron microscopy were performed by I.F. and D.V.T. Optical measurements and data analysis were performed by C.E.R. and R.D.S. Computational work was performed by H.Z., A.O.G. and S.K.G. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Richard D. Schaller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowland, C., Fedin, I., Zhang, H. et al. Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. Nature Mater 14, 484–489 (2015). https://doi.org/10.1038/nmat4231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing