Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Predicting material release during a nuclear reactor accident

In the aftermath of a nuclear reactor accident, understanding the release of fission products from the fuel is key.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in the UO2 lattice.
Figure 2: Schematic representation of irradiated nuclear fuel at the microscopic scale.
Figure 3: Fission gas release from nuclear fuel as measured under laboratory conditions using Knudsen effusion mass spectrometry.
Figure 4: The normalized fractional release (NFR) of 131Xe from fuel disk samples irradiated in a materials testing reactor.
Figure 5: Processes that control fission product release.

References

  1. United States Nuclear Regulatory Commission; http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/3mile-isle.html

  2. World Nuclear Association; available via http://go.nature.com/JQ9CQ9

  3. Takahasi, S. (ed.) Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident (Springer, 2014).

    Book  Google Scholar 

  4. Steinhauser, G., Brandl, A. & Johnson, T. E. Sci. Total Environ. 470–471, 800–817 (2014).

    Article  Google Scholar 

  5. Bailly du Bois, P. et al. J. Environ. Radioact. 114, 2–9 (2012).

    Article  CAS  Google Scholar 

  6. Konings, R. J. M., Wiss, T. & Guéneau, C. in The Chemistry of Actinides and Transactinide Elements 4th edn, Vol. 6 (eds Morss, L. R., Fuger, J. & Edelstein, N. M.) Ch. 34, 3665–3812 (Springer, 2010).

    Book  Google Scholar 

  7. Grimes, R. W. & Catlow, C. R. A. Phil. Trans. R. Soc. Lond. A 335, 609–634 (1991).

    Article  CAS  Google Scholar 

  8. Liu, X.-Y. et al. Appl. Phys. Lett. 98, 151902 (2011).

    Article  Google Scholar 

  9. Hong, H. et al. Phys. Rev. B 85, 144110 (2012).

    Article  Google Scholar 

  10. Turnbull, J. A., White, R. & Wise, C. in Water Reactor Fuel Element Computer Modelling in Steady State Transient and Accident Conditions 174–181 (International Atomic Energy Agency, 1987).

    Google Scholar 

  11. Wiss, T. et al. JOM 64, 1390–1395 (2012).

    Article  CAS  Google Scholar 

  12. Govers, K. et al. J. Nucl. Mater. 420, 282–290 (2012).

    Article  CAS  Google Scholar 

  13. Kleykamp, H. J. Nucl. Mater. 131, 221–246 (1985).

    Article  CAS  Google Scholar 

  14. Cordfunke, E. H. P. & Konings, R. J. M. J. Nucl. Mater. 152, 301–309 (1988).

    Article  Google Scholar 

  15. Devell, L. & Johansson, K. Specific Features of Cesium Chemistry and Physics Affecting Reactor Accident Source Term Predictions SKI Report 94:29 NEA /CSNI-r1994-28 (Nuclear Energy Agency, OECD, 1994).

    Google Scholar 

  16. Hiernaut, J. P. et al. J. Nucl. Mater. 377, 313–324 (2008).

    Article  CAS  Google Scholar 

  17. Cronenberg, A. W. & Osetek, D. J. J. Nucl. Mater. 149, 252–260 (1987).

    Article  CAS  Google Scholar 

  18. Wiss, T. et al. Trans. Am. Nuclear Soc. 104, 285–286 (2011).

    Google Scholar 

  19. Rondinella, V. V. & Wiss, T. Mater. Today 13, 24–32 (December, 2010).

  20. Walker, C. T. et al. J. Nucl. Mater. 393, 212–223 (2008).

    Article  Google Scholar 

  21. Colle, J. Y. J. Nucl. Mater. 442, 330–340 (2013).

    Article  CAS  Google Scholar 

  22. Kelms, S. Nucl. Eng. Design 239, 274–280 (2009).

    Article  Google Scholar 

  23. Higgs, J. D., Lewis, B. J., Thompson, W. T. & He, Z. J. Nucl. Mater. 366, 99–128 (2008).

    Article  Google Scholar 

  24. Hiernaut, J. P. et al. J. Nucl. Mater. 372, 215–225 (2008).

    Article  CAS  Google Scholar 

  25. Stohl, A. et al. Atmos. Chem. Phys. 12, 2313–2343 (2012).

    Article  CAS  Google Scholar 

  26. Shinonaga, T. et al. Environ. Sci. Technol. 48, 3808–3814 (2014).

    Article  CAS  Google Scholar 

  27. Tokyo Electric Power Company; available via http://go.nature.com/ATqQ8k

  28. Bosland, L. et al. Ann. Nucl. Energy 74, 184–199 (2014).

    Article  CAS  Google Scholar 

  29. Clément, B. et al. Nucl. Eng. Design 226, 5–82 (2003).

    Article  Google Scholar 

  30. Chatelard, P. et al. Nucl. Eng. Design 272, 119–135 (2014).

    Article  CAS  Google Scholar 

  31. Gauntt, R. O. et al. MELCOR Computer Code Manuals, Vol. 1: Primer and User's Guide, Version 1.8.6, NUREG/CR-6119, Vol. 1, Rev. 3 (United States Nuclear Regulatory Commission, 2005).

  32. http://www.psi.ch/media/retention-of-radioactive-iodine-in-serious-npp-accidents

  33. Yip, S. & Short, M. P. Nature Mater. 12, 774–777 (2013).

    Article  CAS  Google Scholar 

  34. Braun, M. et al. Progress Comput. Fluid Dyn. 6, 272–277 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudy J. M. Konings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konings, R., Wiss, T. & Beneš, O. Predicting material release during a nuclear reactor accident. Nature Mater 14, 247–252 (2015). https://doi.org/10.1038/nmat4224

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing