Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells

Abstract

Nanoscale resistance-switching cells that operate via the electrochemical formation and disruption of metallic filaments that bridge two electrodes are among the most promising devices for post-CMOS electronics. Despite their importance, the mechanisms that govern their remarkable properties are not fully understood, especially for nanoscale devices operating at ultrafast rates, limiting our ability to assess the ultimate performance and scalability of this technology. We present the first atomistic simulations of the operation of conductive bridging cells using reactive molecular dynamics with a charge equilibration method extended to describe electrochemical reactions. The simulations predict the ultrafast switching observed in these devices, with timescales ranging from hundreds of picoseconds to a few nanoseconds for devices consisting of Cu active electrodes and amorphous silica dielectrics and with dimensions corresponding to their scaling limit (cross-sections below 10 nm). We find that single-atom-chain bridges often form during device operation but that they are metastable, with lifetimes below a nanosecond. The formation of stable filaments involves the aggregation of ions into small metallic clusters, followed by a progressive chemical reduction as they become connected to the cathode. Contrary to observations in larger cells, the nanoscale conductive bridges often lack crystalline order. An atomic-level mechanistic understanding of the switching process provides guidelines for materials optimization for such applications and the quantitative predictions over an ensemble of devices provide insight into their ultimate scaling and performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic snapshots during device operation.
Figure 2: Atomic mechanisms of filament formation and dissolution.
Figure 3: Switching characteristics of an ensemble of independent EM cells.
Figure 4: Atomic structure of bridging filaments in nanoscale EM cells.

Similar content being viewed by others

References

  1. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  2. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  3. Zhirnov, V. V., Meade, R., Cavin, R. K. & Sandhu, G. Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011).

    Article  Google Scholar 

  4. Yang, Y. C., Pan, F., Liu, Q., Liu, M. & Zeng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9, 1636–1643 (2009).

    Article  CAS  Google Scholar 

  5. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  6. Soni, R. et al. Probing Cu doped Ge0.3Se0.7 based resistance switching memory devices with random telegraph noise. J. Appl. Phys. 107, 024517 (2010).

    Article  Google Scholar 

  7. Wang, Z., Kadohira, T., Tada, T. & Watanabe, S. Nonequilibrium quantum transport properties of a silver atomic switch. Nano Lett. 7, 2688–2692 (2007).

    Article  CAS  Google Scholar 

  8. Liang, C., Terabe, K., Hasegawa, T. & Aono, M. Resistance switching of an individual Ag2S/Ag nanowire heterostructure. Nanotechnology 18, 486202 (2007).

    Google Scholar 

  9. Kever, T., Boettger, U., Schindler, C. & Waser, R. On the origin of bistable resistive switching in metal organic charge transfer complex memory cells. Appl. Phys. Lett. 91, 083506 (2007).

    Article  Google Scholar 

  10. Kozicki, M. N., Gopalan, C., Balakrishnan, M., Park, M. & Mitkova, M. Non-Volatile Memory Technology Symp. Proc. 10–17 (IEEE, 2004).

    Google Scholar 

  11. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  12. Schindler, C., Staikov, G. & Waser, R. Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl. Phys. Lett. 94, 072109 (2009).

    Article  Google Scholar 

  13. Jo, S. H., Kim, K-H. & Lu, W. Programmable resistance switching in nanoscale two-terminal devices. Nano Lett. 9, 496–500 (2009).

    Article  CAS  Google Scholar 

  14. Menzel, S., Tappertzhofen, S., Waser, R. & Valov, I. Switching kinetics of electrochemical metallization memory cells. Phys. Chem. Chem. Phys. 15, 6945–6952 (2013).

    Article  CAS  Google Scholar 

  15. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nature Commun. 3, 732 (2012).

    Article  Google Scholar 

  16. Valov, I. et al. Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nature Mater. 11, 530–535 (2012).

    Article  CAS  Google Scholar 

  17. Tappertzhofen, S., Muendelein, H., Valov, I. & Waser, R. Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale 4, 3040–3043 (2012).

    Article  CAS  Google Scholar 

  18. Nayak, A., Tsuruoka, T., Terabe, K., Hasegawa, T. & Aono, M. Switching kinetics of a Cu2S-based gap-type atomic switch. Nanotechnology 22, 235201 (2011).

    Article  Google Scholar 

  19. Tsuruoka, T. et al. Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv. Funct. Mater. 22, 70–77 (2012).

    Article  CAS  Google Scholar 

  20. Tappertzhofen, S. et al. Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7, 6396–6402 (2013).

    Article  CAS  Google Scholar 

  21. Tappertzhofen, S., Valov, I. & Waser, R. Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23, 145703 (2012).

    Article  CAS  Google Scholar 

  22. Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011).

    Article  Google Scholar 

  23. Yang, Y. C., Pan, F., Liu, Q., Liu, M. & Zeng, F. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9, 1636–1643 (2009).

    Article  CAS  Google Scholar 

  24. Schindler, C., Puthen Thermadam, S. C., Waser, R. & Kozicki, M. N. Bipolar and unipolar resistive switching in Cu-doped SiO2 . IEEE Trans. Electron Devices 54, 2762–2768 (2007).

    Article  CAS  Google Scholar 

  25. Liu, Q. et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162–6168 (2010).

    Article  CAS  Google Scholar 

  26. Liu, Q. et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012).

    Article  CAS  Google Scholar 

  27. Rappe, A. K. & Goddard, W. A. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358–3363 (1991).

    Article  CAS  Google Scholar 

  28. Chen, J. & Martinez, T. J. Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models. J. Chem. Phys. 131, 044114 (2009).

    Article  Google Scholar 

  29. Balakrishnan, M., Puthen Thermadam, S. C., Mitkova, M. & Kozicki, M. N. 7th Annual Non-Volatile Memory Technology Symp. 104–110 (IEEE, 2006).

    Google Scholar 

  30. Bernard, Y., Renard, V. T., Gonon, P. & Jousseaume, V. Back-end-of-line compatible Conductive Bridging RAM based on Cu and SiO2 . Microelectronic Engineering 88, 814–816 (2011).

    Article  CAS  Google Scholar 

  31. Supriyo, D. Lessons from Nanoelectronics: A New Perspective on Transport (World Scientific Publishing Company, 2012).

    Google Scholar 

  32. Schindler, C., Weides, M., Kozicki, M. N. & Waser, R. Low current resistive switching in Cu-SiO2 cells. Appl. Phys. Lett. 92, 122910 (2008).

    Article  Google Scholar 

  33. Dapp, W. B. & Müser, M. H. Redox reactions with empirical potentials: Atomistic battery discharge simulations. J. Chem. Phys. 139, 064106 (2013).

    Article  Google Scholar 

  34. Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature Mater. 11, 306–310 (2012).

    Article  CAS  Google Scholar 

  35. Van Duin, A. C. T. et al. ReaxFF(SiO) reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107, 3803–3811 (2003).

    Article  CAS  Google Scholar 

  36. Van Duin, A. C. T. et al. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507–9514 (2010).

    Article  CAS  Google Scholar 

  37. Anderson, N. L., Vedula, R. P., Schultz, P. A., Van Ginhoven, R. M. & Strachan, A. First-principles investigation of low energy E ‘ center precursors in amorphous silica. Phys. Rev. Lett. 106, 206402 (2011).

    Article  Google Scholar 

  38. Steven, P. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the FAME Center, one of six centres of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. Support by the US Department of Energy’s National Nuclear Security Administration under Grant No. DE-FC52-08NA28617 is acknowledged. Stimulating discussions with S. Kramer, S. Pandey, R. Meade and G. Sandhu are gratefully acknowledged, as are computational resources from nanoHUB.org and Purdue.

Author information

Authors and Affiliations

Authors

Contributions

N.O. and A.S. designed the methods and research and wrote the manuscript. N.O. and D.G. carried out the simulations. All authors contributed to the analysis and discussion of the data.

Corresponding author

Correspondence to Alejandro Strachan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 35215 kb)

Supplementary Information

Supplementary Movie 1 (MOV 616401 kb)

Supplementary Information

Supplementary Movie 2 (MPG 186214 kb)

Supplementary Information

Supplementary Movie 3 (MPG 230508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nature Mater 14, 440–446 (2015). https://doi.org/10.1038/nmat4221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing