Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conducting polymer nanostructures for photocatalysis under visible light


Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues1. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis and characterization of PDPB nanofibres.
Figure 2: Comparative photocatalytic activity of PDPB nanofibres, TiO2 and Ag–TiO2.
Figure 3: Schematic representation of the photocatalytic mechanism and energy level calculation of polymer structures by density functional theory.
Figure 4: Recycling and stability of the PDPB nanofibres.


  1. 1

    Serpone, N. & Emeline, A. V. Semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3, 673–677 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Jing, L., Zhou, W., Tiana, G. & Fu, H. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 42, 9509–9549 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Pelaez, M. et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 125, 331–349 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Belloni, J., Treguer, M., Remita, H. & De Keyzer, R. Enhanced yield of photoinduced electrons in doped silver halide crystals. Nature 402, 865–867 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Kamat, P. V. TiO2 nanostructures: Recent physical chemistry advances. J. Phys. Chem. Lett. 3, 663–672 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Grabowska, E. et al. Modification of titanium (IV) dioxide with small silver nanoparticles: Application in photocatalysis. J. Phys. Chem. C 117, 1955–1962 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Mater. 8, 76–80 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Lang, X., Chen, X. & Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 43, 473–486 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Long, Y. Z. et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 36, 1415–1442 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Yin, Z. & Zheng, Q. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2, 179–218 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Muktha, B., Madras, G., Guru Row, T. N., Scherf, U. & Patil, S. Conjugated polymers for photocatalysis. J. Phys. Chem. B 111, 7994–7998 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Luo, Q., Bao, L., Wang, D., Li, X. & An, J. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene. J. Phys. Chem. C 116, 25806–25815 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Zhang, M., Rouch, W. D. & McCulla, R. D. Conjugated polymers as photoredox catalysts: Visible-light-driven reduction of aryl aldehydes by poly(p-phenylene). Eur. J. Org. Chem. 2012, 6187–6196 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Jelinek, R. & Ritenberga, M. Polydiacetylenes–recent molecular advances and applications. RSC Adv. 3, 21192–21201 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Mackiewicz, N. et al. Tumor-targeted polydiacetylene micelles for in vivo imaging and drug delivery. Small 7, 2786–2792 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Pena dos Santos, E. et al. Existence and stability of new nanoreactors: Highly swollen hexagonal liquid crystals. Langmuir 21, 4362–4369 (2005).

    Article  Google Scholar 

  18. 18

    Ghosh, S. et al. PEDOT nanostructures synthesized in hexagonal mesophases. New J. Chem. 38, 1106–1115 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Matsumoto, A. in Handbook of Radical Polymerization (eds Matyjaszewski, K. & Davis, T.) Ch. 13, 691–774 (John Wiley, 2002).

    Book  Google Scholar 

  20. 20

    Surendran, G. et al. Highly Swollen liquid crystals as new reactors for the synthesis of nanomaterials. Chem. Mater. 17, 1505–1514 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Dazzi, A. et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 66, 1365–1384 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Bredas, J. L., Silbey, R., Boudreaux, D. S. & Chance, R. R. Chain-length dependence of electronic and electrochemical properties of conjugated systems: Polyacetylene, polyphenylene, polythiophene, and polypyrrole. J. Am. Chem. Soc. 105, 6555–6559 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Metri, N. et al. Processable star-shaped molecules with triphenylamine core as hole-transporting materials: Experimental and theoretical approach. J. Phys. Chem. C 116, 3765–3772 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Ohtani, B. Titania photocatalysis beyond recombination: A critical review. Catalysts 3, 942–953 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Ferradini, C. & Pucheault, J. Biologie de l’action des rayonnements ionisants (Masson, 1983).

    Google Scholar 

  26. 26

    Ghosh, S., Priyam, A., Bhattacharya, S. C. & Saha, A. Mechanistic aspects of quantum dot based probing of Cu (II) ions: Role of dendrimer in sensor efficiency. J. Fluoresc. 19, 723–731 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Diesen, V. & Jonsson, M. Tris(hydroxymethyl)aminomethane as a probe in heterogeneous TiO2 photocatalysis. J. Adv. Oxid. Technol. 15, 392–398 (2012).

    CAS  Google Scholar 

  28. 28

    Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Schaming, D., Costa-Coquelard, C., Sorgues, S., Ruhlmann, L. & Lampre, I. Photocatalytic reduction of Ag2SO4 by electrostatic complexes formed by tetracationic zinc porphyrins and tetracobalt Dawson-derived sandwich polyanion. Appl. Catal. A 373, 160–167 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Ohtani, B., Mahaney, O. O. P., Amano, F., Murakami, N. & Abe, R. What are titania photocatalysts—an exploratory correlation of photocatalytic activity with structural and physical properties. J. Adv. Oxid. Technol. 13, 247–261 (2010).

    CAS  Google Scholar 

  31. 31

    Mahaney, O. O. P., Murakami, N., Abe, R. & Ohtani, B. Correlation between photocatalytic activities and stuctural and physical properties of titanium (IV) oxide powders. Chem. Lett. 38, 238–239 (2009).

    Article  Google Scholar 

Download references


S.G. acknowledges Marie Curie COFUND, RBUCE-UP (Research Based University Chairs of Excellence of Paris) and PRES UniverSud Paris for a postdoctoral fellowship. The authors gratefully acknowledge C’Nano Ile de France and Université Paris-Sud (ERM project) for financial support for the Cobalt-60 panoramic gamma source.

Author information




S.G. carried out fabrication of the polymer nanostructure, performed the experiment on photocatalytic activity and also contributed to writing of the manuscript. N.A.K. conducted the photocatalysis experiments. L.R. characterized the doped mesophases by SAXS and the polymer by XRD. S.R. provided information about conducting polymers. A.D. and A.D-B. ran the nanoIR system for characterization and stability of the polymer nanostructures with cycling. P.B. characterized the polymer nanostructures by TEM. F.G. and P-H.A. provided NMR characterizations, theoretical calculations, bandgap measurements and electrochemical investigations. H.R. supervised the entire project and also wrote the manuscript.

Corresponding author

Correspondence to Hynd Remita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1023 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Kouamé, N., Ramos, L. et al. Conducting polymer nanostructures for photocatalysis under visible light. Nature Mater 14, 505–511 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing