Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binding configurations and intramolecular strain in single-molecule devices

Abstract

The development of molecular-scale electronic devices has made considerable progress over the past decade, and single-molecule transistors, diodes and wires have all been demonstrated. Despite this remarkable progress, the agreement between theoretically predicted conductance values and those measured experimentally remains limited. One of the primary reasons for these discrepancies lies in the difficulty to experimentally determine the contact geometry and binding configuration of a single-molecule junction. In this Article, we apply a small-amplitude, high-frequency, sinusoidal mechanical signal to a series of single-molecule devices during junction formation and breakdown. By measuring the current response at this frequency, it is possible to determine the most probable binding and contact configurations for the molecular junction at room temperature in solution, and to obtain information about how an applied strain is distributed within the molecular junction. These results provide insight into the complex configuration of single-molecule devices, and are in excellent agreement with previous predictions from theoretical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanically modulated STM break-junction experiments.
Figure 2: STM break-junction measurements of the alkanes.
Figure 3: Values of α obtained for C6, C8 and C10.
Figure 4: Mechanical properties of molecular junctions.

Similar content being viewed by others

References

  1. Seminario, J. M. Molecular electronics: Approaching reality. Nature Mater. 4, 111–113 (2005).

    Article  CAS  Google Scholar 

  2. Reed, M. A. Molecular electronics: Back under control. Nature Mater. 3, 286–287 (2004).

    Article  CAS  Google Scholar 

  3. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  4. Heath, J. R. Molecular electronics. Annu. Rev. Mater. Res. 39, 1–23 (2009).

    Article  CAS  Google Scholar 

  5. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: Clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  CAS  Google Scholar 

  6. Zhirnov, V. V. & Cavin, R. K. Molecular electronics: Chemistry of molecules or physics of contacts? Nature Mater. 5, 11–12 (2006).

    Article  CAS  Google Scholar 

  7. Haiss, W. et al. Precision control of single-molecule electrical junctions. Nature Mater. 5, 995–1002 (2006).

    Article  CAS  Google Scholar 

  8. Demir, F. & Kirczenow, G. Communication: Identification of the molecule–metal bonding geometries of molecular nanowires. J. Chem. Phys. 134, 121103 (2011).

    Article  Google Scholar 

  9. Demir, F. & Kirczenow, G. Identification of the atomic scale structures of the gold-thiol interfaces of molecular nanowires by inelastic tunneling spectroscopy. J. Chem. Phys. 136, 014703 (2012).

    Article  Google Scholar 

  10. Paulsson, M., Krag, C., Frederiksen, T. & Brandbyge, M. Conductance of alkanedithiol single-molecule junctions: A molecular dynamics study. Nano Lett. 9, 117–121 (2008).

    Article  Google Scholar 

  11. Li, Z. & Kosov, D. S. Nature of well-defined conductance of amine-anchored molecular junctions: Density functional calculations. Phys. Rev. B 76, 035415 (2007).

    Article  Google Scholar 

  12. Hybertsen, M. S. et al. Amine-linked single-molecule circuits: Systematic trends across molecular families. J. Phys. Condens. Matter 20, 374115 (2008).

    Article  Google Scholar 

  13. Muller, K. H. Effect of the atomic configuration of gold electrodes on the electrical conduction of alkanedithiol molecules. Phys. Rev. B 73, 045403 (2006).

    Article  Google Scholar 

  14. Quek, S. Y. et al. Amine–gold linked single-molecule circuits: Experiment and theory. Nano Lett. 7, 3477–3482 (2007).

    Article  CAS  Google Scholar 

  15. Li, C. et al. Charge transport in single Au — Alkanedithiol — Au junctions: Coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130, 318–326 (2008).

    Article  CAS  Google Scholar 

  16. Li, X. et al. Conductance of single alkanedithiols. Conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    Article  CAS  Google Scholar 

  17. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  CAS  Google Scholar 

  18. Hihath, J., Arroyo, C. R., Rubio-Bollinger, G., Tao, N. & Agraït, N. Study of electron–phonon interactions in a single molecule covalently connected to two electrodes. Nano Lett. 8, 1673–1678 (2008).

    Article  Google Scholar 

  19. Paulsson, M., Frederiksen, T. & Brandbyge, M. Modeling inelastic phonon scattering in atomic- and molecular-wire junctions. Phys. Rev. B 72, 201101 (2005).

    Article  Google Scholar 

  20. Lin, L-L., Wang, C-K. & Luo, Y. Inelastic electron tunneling spectroscopy of gold–benzenedithiol–gold junctions: Accurate determination of molecular conformation. ACS Nano 5, 2257–2263 (2011).

    Article  CAS  Google Scholar 

  21. Frei, M., Aradhya, S. V., Koentopp, M., Hybertsen, M. S. & Venkataraman, L. Mechanics and chemistry: Single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11, 1518–1523 (2011).

    Article  CAS  Google Scholar 

  22. Xu, B., Xiao, X. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  Google Scholar 

  23. Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  24. Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment Vol. 1 (World Scientific, 2010).

    Book  Google Scholar 

  25. Xia, J. L., Diez-Perez, I. & Tao, N. J. Electron transport in single molecules measured by a distance-modulation assisted break junction method. Nano Lett. 8, 1960–1964 (2008).

    Article  CAS  Google Scholar 

  26. Haiss, W. et al. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 113, 5823–5833 (2009).

    Article  CAS  Google Scholar 

  27. Guo, S., Hihath, J., Díez-Pérez, I. & Tao, N. Measurement and statistical analysis of single-molecule current–voltage characteristics, transition voltage spectroscopy, and tunneling barrier height. J. Am. Chem. Soc. 133, 19189–19197 (2011).

    Article  CAS  Google Scholar 

  28. Rubio-Bollinger, G., Bahn, S. R., Agraït, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phy. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

  29. Minoni, G. & Zerbi, G. End effects on longitudinal accordion modes: Fatty acids and layered systems. J. Phys. Chem. 86, 4791–4798 (1982).

    Article  CAS  Google Scholar 

  30. Frederiksen, T. et al. Exploring the tilt-angle dependence of electron tunneling across molecular junctions of self-assembled alkanethiols. ACS Nano 3, 2073–2080 (2009).

    Article  CAS  Google Scholar 

  31. Agrait, N., Untiedt, C., Rubio-Bollinger, G. & Vieira, S. Onset of energy dissipation in ballistic atomic wires. Phy. Rev. Lett. 88, 216803 (2002).

    Article  Google Scholar 

  32. Lin, J. & Beratan, D. N. Tunneling while pulling: The dependence of tunneling current on end-to-end distance in a flexible molecule. J. Phys. Chem. A 108, 5655–5661 (2004).

    Article  CAS  Google Scholar 

  33. Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    Article  CAS  Google Scholar 

  34. Profeta, S. & Allinger, N. L. Molecular mechanics calculations on aliphatic amines. J. Am. Chem. Soc. 107, 1907–1918 (1985).

    Article  CAS  Google Scholar 

  35. Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

    Article  CAS  Google Scholar 

  36. Levin, C. S. et al. Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. Nano Lett. 6, 2617–2621 (2006).

    Article  CAS  Google Scholar 

  37. Haiss, W. et al. Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss. 131, 253–264 (2006).

    Article  CAS  Google Scholar 

  38. Halgren, T. A. Merck molecular force field . I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Science Foundation (ECCS-1231915) and the UC Davis RISE program.

Author information

Authors and Affiliations

Authors

Contributions

J.H. designed the experimental plan. H.R-R., J.M.A. and Y.L. performed single-molecule conductance experiments. H.R-R. analysed the data. All the authors discussed the results and contributed to elaboration of the manuscript.

Corresponding author

Correspondence to Joshua Hihath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rascón-Ramos, H., Artés, J., Li, Y. et al. Binding configurations and intramolecular strain in single-molecule devices. Nature Mater 14, 517–522 (2015). https://doi.org/10.1038/nmat4216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing