Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicting nonlinear properties of metamaterials from the linear response


The discovery of optical second harmonic generation in 1961 started modern nonlinear optics1,2,3. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller’s Rule4,5, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials6, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation7, new quasi-phase matching capabilities8,9 and large nonlinear susceptibilities8,9,10. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the metamaterial array.
Figure 2: Nonlinear scattering theory versus nonlinear oscillator model (Miller’s rule).
Figure 3: Nonlinear scattering theory.
Figure 4: Wavelength dependence of the optimal nanostructure for second harmonic generation.

Similar content being viewed by others


  1. Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article  Google Scholar 

  2. Armstrong, J. A., Bloembergen, N., Ducuing, J. & Pershan, P. S. Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918–1939 (1962).

    Article  CAS  Google Scholar 

  3. Bloembergen, N. & Pershan, P. S. Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962).

    Article  Google Scholar 

  4. Garrett, C. & Robinson, F. Miller’s phenomenological rule for computing nonlinear susceptibilities. IEEE J. Quantum Electron. 2, 328–329 (1966).

    Article  CAS  Google Scholar 

  5. Miller, R. C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5, 17–19 (1964).

    Article  CAS  Google Scholar 

  6. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  Google Scholar 

  7. Suchowski, H. et al. Phase mismatch-free nonlinear propagation in optical zero-index materials. Science 342, 1223–1226 (2013).

    Article  CAS  Google Scholar 

  8. Rose, A., Huang, D. & Smith, D. R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).

    Article  Google Scholar 

  9. Rose, A., Larouche, S., Poutrina, E. & Smith, D. R. Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory. Phys. Rev. A 86, 033816 (2012).

    Article  Google Scholar 

  10. Sukhorukov, A. A., Solntsev, A. S., Kruk, S. S., Neshev, D. N. & Kivshar, Y. S. Nonlinear coupled-mode theory for periodic plasmonic waveguides and metamaterials with loss and gain. Opt. Lett. 39, 462–465 (2014).

    Article  Google Scholar 

  11. Byer, R. L. Nonlinear optical phenomena and materials. Annu. Rev. Mater. Sci. 4, 147–190 (1974).

    Article  CAS  Google Scholar 

  12. Scandolo, S. & Bassani, F. Miller’s rule and the static limit for second-harmonic generation. Phys. Rev. B 51, 6928–6931 (1995).

    Article  CAS  Google Scholar 

  13. Bell, M. I. Frequency dependence of Miller’s rule for nonlinear susceptibilities. Phys. Rev. B 6, 516–521 (1972).

    Article  Google Scholar 

  14. Cataliotti, F. S., Fort, C., Hänsch, T. W., Inguscio, M. & Prevedelli, M. Electromagnetically induced transparency in cold free atoms: Test of a sum rule for nonlinear optics. Phys. Rev. A 56, 2221–2224 (1997).

    Article  CAS  Google Scholar 

  15. Miles, R. & Harris, S. Optical third-harmonic generation in alkali metal vapors. IEEE J. Quantum Electron. 9, 470–484 (1973).

    Article  CAS  Google Scholar 

  16. Matranga, C. & Guyot-Sionnest, P. Absolute intensity measurements of the optical second-harmonic response of metals from 0.9 to 2.5 eV. J. Chem. Phys. 115, 9503–9512 (2001).

    Article  CAS  Google Scholar 

  17. Rapapa, N. P. & Scandolo, S. Universal constraints for the third-harmonic generation susceptibility. J. Phys. Condens. Matter 8, 6997–7004 (1996).

    Article  CAS  Google Scholar 

  18. Hentschel, M., Utikal, T., Giessen, H. & Lippitz, M. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 12, 3778–3782 (2012).

    Article  CAS  Google Scholar 

  19. Metzger, B., Hentschel, M., Lippitz, M. & Giessen, H. Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas. Opt. Lett. 37, 4741–4743 (2012).

    Article  CAS  Google Scholar 

  20. Niesler, F. B. P., Feth, N., Linden, S. & Wegener, M. Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett. 36, 1533–1535 (2011).

    Article  Google Scholar 

  21. Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007).

    Article  CAS  Google Scholar 

  22. Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012).

    Article  CAS  Google Scholar 

  23. Dadap, J. I., Shan, J. & Heinz, T. F. Theory of optical second-harmonic generation from a sphere of centrosymmetric material: Small-particle limit. J. Opt. Soc. Am. B 21, 1328–1347 (2004).

    Article  CAS  Google Scholar 

  24. Poutrina, E., Huang, D., Urzhumov, Y. & Smith, D. R. Nonlinear oscillator metamaterial model: Numerical and experimental verification. Opt. Express 19, 8312–8319 (2011).

    Article  CAS  Google Scholar 

  25. Bassani, F. & Lucarini, V. General properties of optical harmonic generation from a simple oscillator model. Nuovo Cimento D 20, 1117–1125 (1998).

    Article  Google Scholar 

  26. Lippitz, M., van Dijk, M. A. & Orrit, M. Third-harmonic generation from single gold nanoparticles. Nano Lett. 5, 799–802 (2005).

    Article  CAS  Google Scholar 

  27. Roke, S., Bonn, M. & Petukhov, A. V. Nonlinear optical scattering: The concept of effective susceptibility. Phys. Rev. B 70, 115106 (2004).

    Article  Google Scholar 

  28. Gentile, M. et al. Investigation of the nonlinear optical properties of metamaterials by second harmonic generation. Appl. Phys. B 105, 149–162 (2011).

    Article  CAS  Google Scholar 

  29. Husnik, M. et al. Quantitative experimental determination of scattering and absorption cross-section spectra of individual optical metallic nanoantennas. Phys. Rev. Lett. 109, 233902 (2012).

    Article  Google Scholar 

  30. Castro-Lopez, M., Brinks, D., Sapienza, R. & van Hulst, N. F. Aluminum for nonlinear plasmonics: Resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas. Nano Lett. 11, 4674–4678 (2011).

    Article  CAS  Google Scholar 

Download references


This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231. J.R. acknowledges a fellowship from the Samsung Scholarship Foundation, Republic of Korea.

Author information

Authors and Affiliations



K.O. and H.S. conducted the experiments. K.O. performed the theoretical calculations. J.R. fabricated the samples. K.O., H.S., X.Y. and X.Z. prepared the manuscript. X.Z. guided the research. All authors contributed to discussions.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, K., Suchowski, H., Rho, J. et al. Predicting nonlinear properties of metamaterials from the linear response. Nature Mater 14, 379–383 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing