Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator


The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field1,2. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin–orbit coupling and ferromagnetism3,4,5,6,7,8,9,10,11,12,13,14,15,16. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)2Te3 films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e2 (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e2/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (Hc > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The QAH effect in a 4QL (Bi0.29Sb0.71)1.89V0.11Te3 film (sample S1) measured at 25 mK.
Figure 2: Temperature dependence of QAH behaviour in a 4QL (Bi0.29Sb0.71)1.89V0.11Te3 film (sample S1).
Figure 3: Comparison of the ferromagnetic properties in Cr- and V-doped Sb2Te3.
Figure 4: The self-driven QAH state in a different 4QL (Bi0.29Sb0.71)1.89V0.11Te3 film (sample S2).


  1. 1

    Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–467 (1980).

    Article  Google Scholar 

  2. 2

    Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991).

    Article  Google Scholar 

  3. 3

    Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Onoda, M. & Nagaosa, N. Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals. Phys. Rev. Lett. 90, 206601 (2003).

    Article  Google Scholar 

  5. 5

    Liu, C. X. et al. Quantum anomalous Hall effect in Hg1−yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008).

    Article  Google Scholar 

  6. 6

    Qiao, Z. H. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112, 116404 (2014).

    Article  Google Scholar 

  7. 7

    Qiao, Z. H. et al. Quantum anomalous Hall effect in graphene from Rashba and exchange effects. Phys. Rev. B 82, 161414(R) (2010).

    Article  Google Scholar 

  8. 8

    Zhang, H. B. et al. Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms. Phys. Rev. Lett. 108, 056802 (2012).

    Article  Google Scholar 

  9. 9

    Ezawa, M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. 109, 055502 (2012).

    Article  Google Scholar 

  10. 10

    Nomura, K. et al. Surface-quantized anomalous Hall current and the magnetoelectric effect in magnetically disordered topological insulators. Phys. Rev. Lett. 106, 166802 (2011).

    Article  Google Scholar 

  11. 11

    Garrity, K. F. & Vanderbilt, D. Chern insulators from heavy atoms on magnetic substrates. Phys. Rev. Lett. 110, 116802 (2013).

    Article  Google Scholar 

  12. 12

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  Google Scholar 

  14. 14

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article  Google Scholar 

  16. 16

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect toward the quantized state in a ferromagnetic topological insulator. Nature Phys. 10, 731–736 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Chien, Y. J. Transition Metal-Doped Sb 2 Te 3  and Bi 2 Te 3  Diluted Magnetic Semiconductors PhD dissertation, Univ. Michigan (2007)

  18. 18

    Dyck, J. S. et al. Diluted magnetic semiconductors based on Sb2−xVxTe3 (0.01 ≤ x ≤ 0.03). Phys. Rev. B 65, 115212 (2002).

    Article  Google Scholar 

  19. 19

    Hor, Y. S. et al. Development of ferromagnetism in the doped topological insulator Bi2−xMnxTe3 . Phys. Rev. B 81, 195203 (2010).

    Article  Google Scholar 

  20. 20

    Zhang, J. et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nature Commun. 2, 574 (2011).

    Article  Google Scholar 

  21. 21

    Chang, C. Z. et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. B 108, 1394–1396 (1957).

    CAS  Article  Google Scholar 

  23. 23

    He, K. et al. Quantum anomalous Hall effect. Natl Sci. Rev. 1, 39–49 (2014).

    Google Scholar 

  24. 24

    Nagaosa, N. et al. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  25. 25

    Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2009).

    Google Scholar 

  26. 26

    Livingston, J. D. A review of coercivity mechanisms. J. Appl. Phys. 52, 2544–2548 (1981).

    CAS  Article  Google Scholar 

  27. 27

    Coey, J. M. D. et al. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Mater. 4, 173–179 (2005).

    CAS  Article  Google Scholar 

Download references


We are grateful to P. Wei, J. Liu, L. Fu, N. Samarth, J. Jain, G. Csathy and Z. Fang for helpful discussions, and F. Katmis, W. J. Fang, C. Settens and J. Kong for technical support in characterizing the samples. This research is supported by grants from NSF (DMR-1207469), NSF (DMR-0907007), NSF(ECCS-1402738), ONR (N00014-13-1-0301), NSF (DMR-0820404, DMR-1420620, Penn State MRSEC), NSF (DMR-1103159), DOE (DE-AC02-76SF00515), DARPA (N66001-11-1-4105) and the STC Center for Integrated Quantum Materials under NSF grant DMR-1231319.

Author information




C-Z.C., M.H.W.C. and J.S.M. conceived and designed the research. C-Z.C. grew the material with the help of J.S.M. C-Z.C. performed characterization studies of the samples with the help of B.A.A. and D.H. W.Z. made the devices and performed the transport measurements with the help of C-Z.C., D.Y.K. and M.H.W.C. C.L., H.Z. and S-C.Z. provided theoretical support. C-Z.C., C.L. and M.H.W.C. analysed the data and wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Cui-Zu Chang or Weiwei Zhao or Jagadeesh S. Moodera.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1636 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chang, CZ., Zhao, W., Kim, D. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nature Mater 14, 473–477 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing