Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Curvature-induced symmetry breaking determines elastic surface patterns

Subjects

Abstract

Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift–Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Macroscopic and microscopic wrinkling morphologies of stiff thin films on spherically curved soft substrates.
Figure 2: Notation and experimental system.
Figure 3: Phase diagram of wrinkling morphologies.
Figure 4: Bifurcation diagram of wrinkling patterns.

References

  1. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603–606 (1996).

    Article  CAS  Google Scholar 

  2. Parteli, E., Durán, O., Tsoar, H., Schwämmle, V. & Herrmann, H. J. Dune formation under bimodal winds. Proc. Natl Acad. Sci. USA 106, 22085–22089 (2009).

    Article  CAS  Google Scholar 

  3. Onuki, A. Phase Transition Dynamics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  4. Palmer, A. R. Symmetry breaking and the evolution of development. Science 306, 828–833 (2004).

    Article  CAS  Google Scholar 

  5. Chirat, R., Moulton, D. E. & Goriely, A. Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc. Natl Acad. Sci. USA 110, 6015–6020 (2013).

    Article  CAS  Google Scholar 

  6. Aranson, I. S. & Tsimring, L. S. Patterns and collective behavior in granular media: Theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006).

    Article  CAS  Google Scholar 

  7. Ginzburg, V. L. & Landau, L. D. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950).

    CAS  Google Scholar 

  8. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  Google Scholar 

  9. Ouyang, Q. & Swinney, H. L. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991).

    Article  Google Scholar 

  10. Swift, J. & Hohenberg, P. C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977).

    Article  Google Scholar 

  11. Paczuski, M., Kardar, M. & Nelson, D. R. Landau theory of the crumpling transition. Phys. Rev. Lett. 60, 2638–2640 (1988).

    Article  CAS  Google Scholar 

  12. Delprato, A. M., Samadani, A., Kudrolli, A. & Tsimring, L. S. Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Phys. Rev. Lett. 87, 158102 (2001).

    Article  CAS  Google Scholar 

  13. Brenner, M. P. Chemotactic patterns without chemotaxis. Proc. Natl Acad. Sci. USA 107, 11653–11654 (2010).

    Article  CAS  Google Scholar 

  14. Wiggins, S. & Golubitsky, M. Introduction to Applied Nonlinear Dynamical Systems and Chaos Vol. 2 (Springer-Verlag, 1990).

    Book  Google Scholar 

  15. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  CAS  Google Scholar 

  16. Efimenko, K. et al. Nested self-similar wrinkling patterns in skins. Nature Mater. 4, 293–297 (2005).

    Article  CAS  Google Scholar 

  17. Richman, D. P., Stewart, R. M., Hutchinson, J. W. & Caviness, V. S. Mechanical model of brain convolutional development. Science 189, 18–21 (1975).

    Article  CAS  Google Scholar 

  18. Bowden, N., Brittain, S., Evans, A. G., Hutchinson, J. W. & Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).

    Article  CAS  Google Scholar 

  19. Chan, E. P. & Crosby, A. J. Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238–3242 (2006).

    Article  CAS  Google Scholar 

  20. Terwagne, D., Brojan, M. & Reis, P. M. Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26, 6608–6611 (2014).

    Article  CAS  Google Scholar 

  21. Jiang, H. et al. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl Acad. Sci. USA 104, 15607–15612 (2007).

    Article  CAS  Google Scholar 

  22. Pocivavsek, L. et al. Stress and fold localization in thin elastic membranes. Science 320, 912–916 (2008).

    Article  CAS  Google Scholar 

  23. Brau, F. et al. Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators. Nature Phys. 7, 56–60 (2011).

    Article  CAS  Google Scholar 

  24. Xu, F., Potier-Ferry, M., Belouettar, S. & Cong, Y. 3d finite element modeling for instabilities in thin films on soft substrates. Int. J. Solids Struct. 51, 3619–3632 (2014).

    Article  Google Scholar 

  25. Brau, F., Damman, P., Diamant, H. & Witten, T. A. Wrinkle to fold transition: Influence of the substrate response. Soft Matter 9, 8177–8186 (2013).

    Article  CAS  Google Scholar 

  26. Cao, G., Chen, X., Li, C., Ji, A. & Cao, Z. Self-assembled triangular and labyrinth buckling patterns of thin films on spherical substrates. Phys. Rev. Lett. 100, 036102 (2008).

    Article  Google Scholar 

  27. Li, B., Jia, F., Cao, Y-P., Feng, X-Q. & Gao, H. Surface wrinkling patterns on a core-shell soft sphere. Phys. Rev. Lett. 106, 234301 (2011).

    Article  Google Scholar 

  28. Breid, D. & Crosby, A. J. Curvature-controlled wrinkle morphologies. Soft Matter 9, 3624–3630 (2013).

    Article  CAS  Google Scholar 

  29. Schroll, R. D. et al. Capillary deformations of bendable films. Phys. Rev. Lett. 111, 014301 (2013).

    Article  CAS  Google Scholar 

  30. King, H., Schroll, R. D., Davidovitch, B. & Menon, N. Elastic sheet on a liquid drop reveals wrinkling and crumpling as distinct symmetry-breaking instabilities. Proc. Natl Acad. Sci. USA 109, 9716–9720 (2012).

    Article  CAS  Google Scholar 

  31. Audoly, B. & Boudaoud, A. Buckling of a thin film bound to a compliant substrate, part i: Formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56, 2401–2421 (2008).

    Article  CAS  Google Scholar 

  32. Cai, S., Breid, D., Crosby, A. J., Suo, Z. & Hutchinson, J. W. Periodic patterns and energy states of buckled films on compliant substrates. J. Mech. Phys. Solids 59, 1094–1114 (2011).

    Article  Google Scholar 

  33. Ciarlet, P. G. Mathematical Elasticity Vol. 3 (North Holland, 2000).

    Google Scholar 

  34. Yin, J., Han, X., Cao, Y. & Lu, C. Surface wrinkling on polydimethylsiloxane microspheres via wet surface chemical oxidation. Sci. Rep. 4, 5710 (2014).

    Article  Google Scholar 

  35. Jost, J. Riemannian Geometry and Geometric Analysis (Springer, 2008).

    Google Scholar 

  36. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  CAS  Google Scholar 

  37. Allen, H. G. Analysis and Design of Structural Sandwich Panels (Pergamon, 1969).

    Google Scholar 

  38. Golovin, A. A. & Nepomnyashchy, A. A. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems (Springer, 2006).

    Google Scholar 

  39. Coxeter, H. S. M. Regular Polytopes (Courier Dover Publications, 1973).

    Google Scholar 

  40. Clerc, M. G., Petrossian, A. & Residori, S. Bouncing localized structures in a liquid-crystal light-valve experiment. Phys. Rev. E 71, 015205(R) (2005).

    Article  Google Scholar 

  41. Kozyreff, G. & Tlidi, M. Nonvariational real Swift–Hohenberg equation for biological, chemical, and optical systems. Chaos 17, 037103 (2007).

    Article  CAS  Google Scholar 

  42. Lloyd, D. J. B., Sandstede, B., Avitabile, D. & Champneys, A. R. Localized hexagon patterns of the planar Swift–Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008).

    Article  Google Scholar 

  43. Burke, J. & Knobloch, E. Localized states in the generalized Swift–Hohenberg equation. Phys. Rev. E 73, 056211 (2006).

    Article  Google Scholar 

  44. Cirak, F., Ortiz, M. & Schröder, P. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Int. J. Numer. Methods Eng. 47, 2039–2072 (2000).

    Article  Google Scholar 

  45. Stoop, N., Wittel, F. K., Amar, M. B., Müller, M. M. & Herrmann, H. J. Self-contact and instabilities in the anisotropic growth of elastic membranes. Phys. Rev. Lett. 105, 068101 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation grant No. 148743 (N.S.), by the National Science Foundation, CAREER CMMI-1351449 (P.M.R.) and by an MIT Solomon Buchsbaum Award (J.D.).

Author information

Authors and Affiliations

Authors

Contributions

N.S., R.L. and J.D. developed the theory. N.S. and R.L. performed analytical calculations. N.S. implemented and performed the numerical simulations. D.T. and P.M.R. developed the experiments. N.S., R.L. and D.T. analysed data. All authors discussed the results and contributed to writing the paper.

Corresponding author

Correspondence to Jörn Dunkel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1189 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stoop, N., Lagrange, R., Terwagne, D. et al. Curvature-induced symmetry breaking determines elastic surface patterns. Nature Mater 14, 337–342 (2015). https://doi.org/10.1038/nmat4202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing