Commentary | Published:

Programmable self-assembly

Nature Materials volume 14, pages 29 (2015) | Download Citation

Two conceptual strategies for encoding information into self-assembling building blocks highlight opportunities and challenges in the realization of programmable colloidal nanostructures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

  2. 2.

    & Phil. Trans. R. Soc. A 370, 2807–2822 (2012).

  3. 3.

    & Science 295, 2418–2421 (2002).

  4. 4.

    & SIAM J. Comput. 36, 1544–1569 (2007).

  5. 5.

    , & Nanochemistry: A Chemical Approach to Nanomaterials 2nd edn (Royal Society of Chemistry, 2008).

  6. 6.

    & Concepts of Nanochemistry (Wiley, 2009).

  7. 7.

    , , & Small 5, 1600–1630 (2009).

  8. 8.

    , , & ACS Nano 4, 3591–3605 (2010).

  9. 9.

    , , , & Nature Mater. 7, 527–538 (2008).

  10. 10.

    , & Phys. Rev. Lett. 94, 58302 (2005).

  11. 11.

    et al. Nature Mater. 9, 913–917 (2010).

  12. 12.

    et al. Science 334, 204–208 (2011).

  13. 13.

    , , & Nature 451, 549–552 (2008).

  14. 14.

    et al. Nature 451, 553–556 (2008).

  15. 15.

    , , , & Nature 439, 55–59 (2006).

  16. 16.

    et al. Nature 437, 235–240 (2005).

  17. 17.

    , , , & Adv. Mater. 25, 2779–2783 (2013).

  18. 18.

    et al. J. Am. Chem. Soc. 134, 15114–15121 (2012).

  19. 19.

    et al. Nature 491, 51–55 (2012).

  20. 20.

    et al. Science 331, 199–202 (2011).

  21. 21.

    et al. Nature Mater. 6, 609–614 (2007).

  22. 22.

    et al. Science 329, 197–200 (2010).

  23. 23.

    et al. Angew. Chem. Int. Ed. 51, 11249–11253 (2012).

  24. 24.

    , , & Science 338, 1177–1183 (2012).

  25. 25.

    , , & Nature Nanotech. 6, 763–772 (2011).

  26. 26.

    et al. Proc. Natl Acad Sci. USA 109, 18731–18736 (2012).

  27. 27.

    , , & J. Mol. Biol. 152, 153–161 (1981).

  28. 28.

    , , & Nature 382, 607–609 (1996).

  29. 29.

    et al. Nature 382, 609–611 (1996).

  30. 30.

    et al. J. Am. Chem. Soc. 134, 1699–1709 (2012).

  31. 31.

    , , & Nature 464, 575–578 (2010).

  32. 32.

    et al. Nature Commun. 4, 1688 (2013).

  33. 33.

    & Nature Mater. 6, 557–562 (2007).

  34. 34.

    , , , & ACS Nano 8, 931–940 (2014).

  35. 35.

    , & Science 337, 453–457 (2012).

  36. 36.

    et al. Nature Mater. 10, 872–876 (2011).

  37. 37.

    , & Nano Lett. 8, 1853–1857 (2008).

  38. 38.

    , & Nature 469, 381–384 (2011).

  39. 39.

    & Macromol. Rapid Commun. 31, 150–168 (2010).

  40. 40.

    et al. Phys. Rev. E 81, 041404 (2010).

  41. 41.

    , & Phys. Rev. Lett. 106, 215501 (2011).

  42. 42.

    & Phys. Rev. Lett. 112, 238103 (2014).

  43. 43.

    & Science 338, 1042–1046 (2012).

  44. 44.

    , , & IEEE Trans. Robot. 27, 718–729 (2011).

  45. 45.

    , & Science 297, 237–240 (2002).

  46. 46.

    & Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

  47. 47.

    , , , & J. Am. Chem. Soc. 134, 9327–9334 (2012).

  48. 48.

    et al. J. Am. Chem. Soc. 132, 11920–11922 (2010).

  49. 49.

    et al. J. Am. Chem. Soc. 133, 20060–20063 (2011).

  50. 50.

    , , & J. Am. Chem. Soc. 135, 6834–6837 (2013).

  51. 51.

    et al. Nature Commun. 4, 2413 (2013).

  52. 52.

    et al. Nature Nanotech. 2, 565–569 (2007).

  53. 53.

    , , & Science 309, 113–115 (2005).

  54. 54.

    et al. Science 315, 358–361 (2007).

  55. 55.

    & Adv. Mater. 25, 4829–4844 (2013).

  56. 56.

    et al. Chem. Commun. 44, 5542–5543 (2005).

  57. 57.

    & J. Micromech. Microeng. 18, 065020 (2008).

  58. 58.

    & Adv. Mater. 16, 1151–1170 (2004).

  59. 59.

    , & Nature Chem. 5, 282–292 (2013).

  60. 60.

    , & Q. Rev. Biophys. 40, 287–326 (2007).

  61. 61.

    , , & Science 334, 517–520 (2011).

  62. 62.

    et al. Science 332, 816–821 (2011).

  63. 63.

    & Chem. Soc. Rev. 41, 687–702 (2012).

  64. 64.

    & J. Fluid Mech. 448, 115–146 (2001).

  65. 65.

    & Proc. Natl Acad Sci. USA 104, 15236–15241 (2007).

  66. 66.

    Algorithmic Self-assembly of DNA PhD thesis, California Inst. Technol. (1998).

  67. 67.

    et al. ACS Nano 8, 9979–9987 (2014).

  68. 68.

    Nature 440, 297–302 (2006).

  69. 69.

    , & J. Phys. Chem. Lett. 3, 2103–2111 (2012).

  70. 70.

    et al. Nature 487, 214–218 (2012).

  71. 71.

    , , & Soft Matter 5, 1285–1292 (2009).

  72. 72.

    & Nature 344, 524–526 (1990).

  73. 73.

    , & Science 294, 1684–1688 (2001).

  74. 74.

    , & Soft Matter 5, 1279–1284 (2009).

  75. 75.

    , , , & Nature Mater. 11, 131–137 (2012).

  76. 76.

    et al. Science 294, 137–141 (2001).

  77. 77.

    , , , & Nature 415, 617–620 (2002).

Download references

Acknowledgements

L.C. acknowledges support from Iowa State University. K.J.M.B. acknowledges support from the Center for Bioinspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0000989.

Author information

Affiliations

  1. Ludovico Cademartiri is in the Departments of Materials Science & Engineering and Chemical & Biological Engineering, Iowa State University of Science and Technology, 2240J Hoover Hall, Ames, Iowa 50011, USA, and Ames Laboratory, US Department of Energy, Ames, Iowa 50011, USA

    • Ludovico Cademartiri
  2. Kyle J. M. Bishop is in the Department of Chemical Engineering, The Pennsylvania State University, 132C Fenske Lab, University Park, Pennsylvania 16802, USA

    • Kyle J. M. Bishop

Authors

  1. Search for Ludovico Cademartiri in:

  2. Search for Kyle J. M. Bishop in:

Corresponding author

Correspondence to Ludovico Cademartiri.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat4184

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing