Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Programmable self-assembly

Two conceptual strategies for encoding information into self-assembling building blocks highlight opportunities and challenges in the realization of programmable colloidal nanostructures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of information in top-down manufacturing and bottom-up self-assembly.
Figure 2: Example of the puzzle and folding strategies for information-driven self-assembly.
Figure 3: Examples of experimental realizations of the puzzle approach using colloidal components.
Figure 4: Examples of flexible 1D nanostructures.
Figure 5: Encoding information in 1D nanostructures.

References

  1. Lehn, J-M. Angew. Chem. Int. Ed. 52, 2836–2850 (2013).

    CAS  Google Scholar 

  2. Cartwright, J. H. E. & Mackay, A. L. Phil. Trans. R. Soc. A 370, 2807–2822 (2012).

    Google Scholar 

  3. Whitesides, G. M. & Grzybowski, B. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  4. Soloveichik, D. & Winfree, E. SIAM J. Comput. 36, 1544–1569 (2007).

    Google Scholar 

  5. Ozin, G. A., Arsenault, A. & Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials 2nd edn (Royal Society of Chemistry, 2008).

    Google Scholar 

  6. Cademartiri, L. & Ozin, G. A. Concepts of Nanochemistry (Wiley, 2009).

    Google Scholar 

  7. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Small 5, 1600–1630 (2009).

    CAS  Google Scholar 

  8. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzan, L. M. ACS Nano 4, 3591–3605 (2010).

    CAS  Google Scholar 

  9. Min, Y. J., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. Nature Mater. 7, 527–538 (2008).

    CAS  Google Scholar 

  10. Biancaniello, P., Kim, A. & Crocker, J. Phys. Rev. Lett. 94, 58302 (2005).

    Google Scholar 

  11. Jones, M. R. et al. Nature Mater. 9, 913–917 (2010).

    CAS  Google Scholar 

  12. Macfarlane, R. J. et al. Science 334, 204–208 (2011).

    Article  CAS  Google Scholar 

  13. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. Nature 451, 549–552 (2008).

    CAS  Google Scholar 

  14. Park, S. Y. et al. Nature 451, 553–556 (2008).

    CAS  Google Scholar 

  15. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  16. Leunissen, M. E. et al. Nature 437, 235–240 (2005).

    CAS  Google Scholar 

  17. Feng, L., Dreyfus, R., Sha, R. J., Seeman, N. C. & Chaikin, P. M. Adv. Mater. 25, 2779–2783 (2013).

    CAS  Google Scholar 

  18. Yan, W. et al. J. Am. Chem. Soc. 134, 15114–15121 (2012).

    CAS  Google Scholar 

  19. Wang, Y. et al. Nature 491, 51–55 (2012).

    CAS  Google Scholar 

  20. Chen, Q. et al. Science 331, 199–202 (2011).

    CAS  Google Scholar 

  21. Nie, Z. H. et al. Nature Mater. 6, 609–614 (2007).

    CAS  Google Scholar 

  22. Liu, K. et al. Science 329, 197–200 (2010).

    CAS  Google Scholar 

  23. Vutukuri, H. R. et al. Angew. Chem. Int. Ed. 51, 11249–11253 (2012).

    CAS  Google Scholar 

  24. Ke, Y., Ong, L., Shih, W. & Yin, P. Science 338, 1177–1183 (2012).

    CAS  Google Scholar 

  25. Pinheiro, A., Han, D., Shih, W. & Yan, H. Nature Nanotech. 6, 763–772 (2011).

    CAS  Google Scholar 

  26. Wu, K-T. et al. Proc. Natl Acad Sci. USA 109, 18731–18736 (2012).

    CAS  Google Scholar 

  27. Mandelkern, M., Elias, J. G., Eden, D. & Crothers, D. M. J. Mol. Biol. 152, 153–161 (1981).

    CAS  Google Scholar 

  28. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. Nature 382, 607–609 (1996).

    CAS  Google Scholar 

  29. Alivisatos, A. et al. Nature 382, 609–611 (1996).

    CAS  Google Scholar 

  30. Xu, L. et al. J. Am. Chem. Soc. 134, 1699–1709 (2012).

    CAS  Google Scholar 

  31. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Nature 464, 575–578 (2010).

    CAS  Google Scholar 

  32. Sacanna, S. et al. Nature Commun. 4, 1688 (2013).

    Google Scholar 

  33. Glotzer, S. C. & Solomon, M. J. Nature Mater. 6, 557–562 (2007).

    Google Scholar 

  34. van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. ACS Nano 8, 931–940 (2014).

    CAS  Google Scholar 

  35. Damasceno, P. F., Engel, M. & Glotzer, S. C. Science 337, 453–457 (2012).

    CAS  Google Scholar 

  36. Miszta, K. et al. Nature Mater. 10, 872–876 (2011).

    CAS  Google Scholar 

  37. Ou, F. S., Shaijumon, M. M. & Ajayan, P. M. Nano Lett. 8, 1853–1857 (2008).

    CAS  Google Scholar 

  38. Chen, Q., Bae, S. C. & Granick, S. Nature 469, 381–384 (2011).

    CAS  Google Scholar 

  39. Pawar, A. B. & Kretzschmar, I. Macromol. Rapid Commun. 31, 150–168 (2010).

    CAS  Google Scholar 

  40. Dreyfus, R. et al. Phys. Rev. E 81, 041404 (2010).

    Google Scholar 

  41. Knorowski, C., Burleigh, S. & Travesset, A. Phys. Rev. Lett. 106, 215501 (2011).

    CAS  Google Scholar 

  42. Reinhardt, A. & Frenkel, D. Phys. Rev. Lett. 112, 238103 (2014).

    Google Scholar 

  43. Dill, K. A. & MacCallum, J. L. Science 338, 1042–1046 (2012).

    CAS  Google Scholar 

  44. Cheung, K. C., Demaine, E. D., Bachrach, J. R. & Griffith, S. IEEE Trans. Robot. 27, 718–729 (2011).

    Google Scholar 

  45. Tang, Z., Kotov, N. A. & Giersig, M. Science 297, 237–240 (2002).

    CAS  Google Scholar 

  46. Cölfen, H. & Antonietti, M. Mesocrystals and Nonclassical Crystallization (Wiley, 2008).

    Google Scholar 

  47. Cademartiri, L., Guerin, G., Bishop, K. J. M., Winnik, M. A. & Ozin, G. A. J. Am. Chem. Soc. 134, 9327–9334 (2012).

    CAS  Google Scholar 

  48. Xu, J. et al. J. Am. Chem. Soc. 132, 11920–11922 (2010).

    CAS  Google Scholar 

  49. Wang, Y. et al. J. Am. Chem. Soc. 133, 20060–20063 (2011).

    CAS  Google Scholar 

  50. Wang, P. P., Yang, Y., Zhuang, J. & Wang, X. J. Am. Chem. Soc. 135, 6834–6837 (2013).

    CAS  Google Scholar 

  51. Wang, L. et al. Nature Commun. 4, 2413 (2013).

    Google Scholar 

  52. Mirkovic, T. et al. Nature Nanotech. 2, 565–569 (2007).

    CAS  Google Scholar 

  53. Qin, L. D., Park, S., Huang, L. & Mirkin, C. A. Science 309, 113–115 (2005).

    CAS  Google Scholar 

  54. DeVries, G. A. et al. Science 315, 358–361 (2007).

    CAS  Google Scholar 

  55. Shaw, S. & Cademartiri, L. Adv. Mater. 25, 4829–4844 (2013).

    CAS  Google Scholar 

  56. Perro, A. et al. Chem. Commun. 44, 5542–5543 (2005).

    Google Scholar 

  57. Xu, J. & Attinger, D. J. Micromech. Microeng. 18, 065020 (2008).

    Google Scholar 

  58. Li, D. & Xia, Y. N. Adv. Mater. 16, 1151–1170 (2004).

    CAS  Google Scholar 

  59. Niu, J., Hili, R. & Liu, D. R. Nature Chem. 5, 282–292 (2013).

    CAS  Google Scholar 

  60. Englander, S. W., Mayne, L. & Krishna, M. M. G. Q. Rev. Biophys. 40, 287–326 (2007).

    CAS  Google Scholar 

  61. Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. Science 334, 517–520 (2011).

    CAS  Google Scholar 

  62. Fleishman, S. J. et al. Science 332, 816–821 (2011).

    CAS  Google Scholar 

  63. Martinek, T. A. & Fulop, F. Chem. Soc. Rev. 41, 687–702 (2012).

    CAS  Google Scholar 

  64. Sierou, A. & Brady, J. F. J. Fluid Mech. 448, 115–146 (2001).

    CAS  Google Scholar 

  65. Schulman, R. & Winfree, E. Proc. Natl Acad Sci. USA 104, 15236–15241 (2007).

    CAS  Google Scholar 

  66. Winfree, E. Algorithmic Self-assembly of DNA PhD thesis, California Inst. Technol. (1998).

    Google Scholar 

  67. Lee, H-Y. et al. ACS Nano 8, 9979–9987 (2014).

    CAS  Google Scholar 

  68. Rothemund, P. W. K. Nature 440, 297–302 (2006).

    CAS  Google Scholar 

  69. Warren, S. C., Guney-Altay, O. & Grzybowski, B. A. J. Phys. Chem. Lett. 3, 2103–2111 (2012).

    CAS  Google Scholar 

  70. He, X. M. et al. Nature 487, 214–218 (2012).

    CAS  Google Scholar 

  71. Smoukov, S. K., Gangwal, S., Marquez, M. & Velev, O. D. Soft Matter 5, 1285–1292 (2009).

    CAS  Google Scholar 

  72. Eigler, D. M. & Schweizer, E. K. Nature 344, 524–526 (1990).

    CAS  Google Scholar 

  73. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  74. Tretiakov, K. V., Bishop, K. J. M. & Grzybowski, B. A. Soft Matter 5, 1279–1284 (2009).

    CAS  Google Scholar 

  75. Henzie, J., Grunwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. D. Nature Mater. 11, 131–137 (2012).

    CAS  Google Scholar 

  76. Nicewarner-Pena, S. R. et al. Science 294, 137–141 (2001).

    CAS  Google Scholar 

  77. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Nature 415, 617–620 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

L.C. acknowledges support from Iowa State University. K.J.M.B. acknowledges support from the Center for Bioinspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under Award DE-SC0000989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Cademartiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cademartiri, L., Bishop, K. Programmable self-assembly. Nature Mater 14, 2–9 (2015). https://doi.org/10.1038/nmat4184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing