Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Field-tunable spin-density-wave phases in Sr3Ru2O7

Abstract

The conduction electrons in a metal experience competing interactions with each other and the atomic nuclei. This competition can lead to many types of magnetic order in metals1. For example, in chromium2 the electrons order to form a spin-density-wave (SDW) antiferromagnetic state. A magnetic field may be used to perturb or tune materials with delicately balanced electronic interactions. Here, we show that the application of a magnetic field can induce SDW magnetic order in a quasi-2D metamagnetic metal, where none exists in the absence of the field. We use magnetic neutron scattering to show that the application of a large (B ≈ 8 T) magnetic field to the perovskite metal Sr3Ru2O7 (refs 3, 4, 5, 6, 7) can be used to tune the material through two magnetically ordered SDW states. The ordered states exist over relatively small ranges in field (0.4 T), suggesting that their origin is due to a new mechanism related to the electronic fine structure near the Fermi energy, possibly combined with the stabilizing effect of magnetic fluctuations8,9. The magnetic field direction is shown to control the SDW domain populations, which naturally explains the strong resistivity anisotropy or ‘electronic nematic’ behaviour observed5,6 in this material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-density-wave order in Sr3Ru2O7 observed by neutron diffraction.
Figure 2: Magnetic phase diagram of Sr3Ru2O7.
Figure 3: The effect of tilting the magnetic field away from the c-axis on the SDW order and magnetoresistance.
Figure 4: The structure of the SDW.

Similar content being viewed by others

References

  1. White, R. M. Quantum Theory of Magnetism (Springer, 2007).

    Book  Google Scholar 

  2. Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988).

    Article  CAS  Google Scholar 

  3. Ikeda, S-I., Maeno, Y., Nakatsuji, S., Kosaka, M. & Uwatoko, Y. Ground state in Sr3Ru2O7 Fermi liquid close to a ferromagnetic instability. Phys. Rev. B 62, R6089–R6092 (2000).

    Article  CAS  Google Scholar 

  4. Perry, R. S. et al. Metamagnetism and critical fluctuations in high qualitysingle crystals of the bilayer ruthenate Sr3Ru2O7 . Phys. Rev. Lett. 86, 2661–2664 (2001).

    Article  CAS  Google Scholar 

  5. Grigera, S. A. et al. Disorder-sensitive phase formation linked to metamagnetic quantum criticality. Science 306, 1154–1157 (2004).

    Article  CAS  Google Scholar 

  6. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    Article  CAS  Google Scholar 

  7. Rost, A. W., Perry, R. S., Mercure, J. F., Mackenzie, A. P. & Grigera, S. A. Entropy landscape of phase formation associated with quantum criticality in Sr3Ru2O7 . Science 325, 1360–1363 (2009).

    Article  CAS  Google Scholar 

  8. Berridge, A. M., Green, A. G., Grigera, S. A. & Simons, B. D. Inhomogeneous magnetic phases: A Fulde–Ferrell–Larkin–Ovchinnikov-like phase in Sr3Ru2O7 . Phys. Rev. Lett. 102, 136404 (2009).

    Article  CAS  Google Scholar 

  9. Conduit, G. J., Green, A. G. & Simons, B. D. Inhomogeneous phase formation on the border of itinerant ferromagnetism. Phys. Rev. Lett. 103, 207201 (2009).

    Article  CAS  Google Scholar 

  10. Kwak, J. F., Schirber, J. E., Greene, R. L. & Engler, E. M. Magnetic quantum oscillations in tetramethyltetraselenafulvalenium hexafluorophosphate [(TMTSF)2PF6]. Phys. Rev. Lett. 46, 1296–1299 (1981).

    Article  CAS  Google Scholar 

  11. Gorkov, L. P. & Lebed, A. G. On the stability of the quasi-one-dimensional metallic phase in magnetic fields against the spin density wave formation. J. Phys. Lett. 45, L433 (1984).

    Article  Google Scholar 

  12. Chaikin, P. M., Chashechkina, E. I., Lee, I. J. & Naughton, M. J. Field-induced electronic phase transitions in high magnetic fields. J. Phys. Condens. Matter 10, 11301–11314 (1998).

    Article  CAS  Google Scholar 

  13. Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5 . Science 321, 1652–1654 (2008).

    Article  CAS  Google Scholar 

  14. Zapf, V., Jaime, M. & Batista, C. D. Bose–Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563–614 (2014).

    Article  CAS  Google Scholar 

  15. Wohlfarth, E. P. & Rhodes, P. Collective electron metamagnetism. Phil. Mag. 7, 1817–1824 (1962).

    Article  Google Scholar 

  16. Shimizu, M. Itinerant electron metamagnetism. J. Phys. 43, 155–163 (1982).

    Article  CAS  Google Scholar 

  17. Millis, A. J., Schofield, A. J., Lonzarich, G. G. & Grigera, S. A. Metamagnetic quantum criticality in metals. Phys. Rev. Lett. 88, 217204 (2002).

    Article  CAS  Google Scholar 

  18. Binz, B. & Sigrist, M. Metamagnetism of itinerant electrons in multi-layer ruthenates. Europhys. Lett. 65, 816–822 (2004).

    Article  CAS  Google Scholar 

  19. Tamai, A. et al. Fermi surface and van Hove singularities in the itinerant metamagnet Sr3Ru2O7 . Phys. Rev. Lett. 101, 026407 (2008).

    Article  CAS  Google Scholar 

  20. Kitagawa, K. et al. Metamagnetic quantum criticality revealed by 17O-NMR in the itinerant metamagnet Sr3Ru2O7 . Phys. Rev. Lett. 95, 127001 (2005).

    Article  CAS  Google Scholar 

  21. Stingl, C., Perry, R. S., Maeno, Y. & Gegenwart, P. Symmetry-breaking lattice distortion in Sr3Ru2O7 . Phys. Rev. Lett. 107, 026404 (2011).

    Article  CAS  Google Scholar 

  22. Bruin, J. A. N. et al. Study of the electronic nematic phase of Sr3Ru2O7 with precise control of the applied magnetic field vector. Phys. Rev. B 87, 161106 (2013).

    Article  Google Scholar 

  23. Chu, J-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  CAS  Google Scholar 

  24. Capogna, L. et al. Observation of two-dimensional spin fluctuations in the bilayer ruthenate Sr3Ru2O7 by inelastic neutron scattering. Phys. Rev. B 67, 012504 (2003).

    Article  Google Scholar 

  25. Ramos, S. et al. Spin dynamics in Sr3Ru2O7 near the metamagnetic transition by inelastic neutron scattering. Physica B 403, 1270–1272 (2008).

    Article  CAS  Google Scholar 

  26. Rice, T. M. Band-structure effects in itinerant antiferromagnetism. Phys. Rev. B 2, 3619–3630 (1970).

    Article  Google Scholar 

  27. Singh, D. J. & Mazin, I. I. Electronic structure and magnetism of Sr3Ru2O7 . Phys. Rev. B 63, 165101 (2001).

    Article  Google Scholar 

  28. Overhauser, A. W. Spin density waves in an electron gas. Phys. Rev. 128, 1437–1452 (1962).

    Article  Google Scholar 

  29. Walker, M. B. Phenomenological theory of the spin-density-wave state of chromium. Phys. Rev. B 22, 1338–1347 (1980).

    Article  CAS  Google Scholar 

  30. Chu, J-H. et al. In-plane electronic anisotropy in underdoped Ba(Fe1−xCox)2As2 revealed by partial detwinning in a magnetic field. Phys. Rev. B 81, 214502 (2010).

    Article  Google Scholar 

  31. Grigera, S. A. et al. Magnetic field-tuned quantum criticality in the metallic ruthenate Sr3Ru2O7 . Science 294, 329–332 (2001).

    Article  CAS  Google Scholar 

  32. Shaked, H., Jorgensen, J., Chmaissem, O., Ikeda, S. & Maeno, Y. Neutron diffraction study of the structural distortions in Sr3Ru2O7 . J. Solid State Chem. 154, 361–367 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with A. P. Mackenzie, R. Coldea, Y. Maeno, R. Evans and R. M. Richardson. We are grateful to S. A. Grigera and A. P. Mackenzie for providing resistivity data from ref. 6 which is reproduced in Figs 2 and 3. Our work was supported by the UK EPSRC (Grant No. EP/J015423/1).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and R.S.P. prepared the samples. All authors planned and made the neutron scattering measurements. C.L. and S.M.H. analysed the data and wrote the manuscript. All authors contributed to the discussion and provided input to the manuscript.

Corresponding author

Correspondence to S. M. Hayden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, C., Ramos, S., Perry, R. et al. Field-tunable spin-density-wave phases in Sr3Ru2O7. Nature Mater 14, 373–378 (2015). https://doi.org/10.1038/nmat4181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing