Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Impact of mesoscale order on open-circuit voltage in organic solar cells


Structural order in organic solar cells is paramount: it reduces energetic disorder, boosts charge and exciton mobilities, and assists exciton splitting. Owing to spatial localization of electronic states, microscopic descriptions of photovoltaic processes tend to overlook the influence of structural features at the mesoscale. Long-range electrostatic interactions nevertheless probe this ordering, making local properties depend on the mesoscopic order. Using a technique developed to address spatially aperiodic excitations in thin films and in bulk, we show how inclusion of mesoscale order resolves the controversy between experimental and theoretical results for the energy-level profile and alignment in a variety of photovoltaic systems, with direct experimental validation. Optimal use of long-range ordering also rationalizes the acceptor–donor–acceptor paradigm for molecular design of donor dyes. We predict open-circuit voltages of planar heterojunction solar cells in excellent agreement with experimental data, based only on crystal structures and interfacial orientation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Electrostatic potential of donor materials.
Figure 2: Convergence of energy levels.
Figure 3: Hole and electron energy profiles with and without long-range correction.
Figure 4: Evolution of energy profiles and offsets during growth of the donor layer.
Figure 5: Convergence of energy levels for pentacene, EL86 and D5M.
Figure 6: Ionization energies and open-circuit voltage across different donor/acceptor interfaces.


  1. 1

    Brédas, J-L., Norton, J. E., Cornil, J. & Coropceanu, V. Molecular understanding of organic solar cells: The challenges. Acc. Chem. Res. 42, 1691–1699 (2009).

    Article  Google Scholar 

  2. 2

    Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Dou, L. et al. 25th anniversary article: A decade of organic/polymeric photovoltaic research. Adv. Mater. 25, 6642–6671 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Boudreault, P-L. T., Najari, A. & Leclerc, M. Processable low-bandgap polymers for photovoltaic applications. Chem. Mater. 23, 456–469 (2010).

    Article  Google Scholar 

  5. 5

    Sommer, M., Hüttner, S. & Thelakkat, M. Donor–acceptor block copolymers for photovoltaic applications. J. Mater. Chem. 20, 10788–10797 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Mishra, A. & Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020–2067 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Liu, Y. et al. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency. Sci. Rep. 3, 3356 (2013).

    Article  Google Scholar 

  8. 8

    Meerheim, R., Körner, C. & Leo, K. Highly efficient organic multi-junction solar cells with a thiophene based donor material. Appl. Phys. Lett. 105, 063306 (2014).

    Article  Google Scholar 

  9. 9

    Wilke, A. et al. Electric fields induced by energy level pinning at organic heterojunctions. Appl. Phys. Lett. 98, 123304 (2011).

    Article  Google Scholar 

  10. 10

    Beljonne, D. et al. Electronic processes at organic–organic interfaces: Insight from modeling and implications for opto-electronic devices. Chem. Mater. 23, 591–609 (2011).

    CAS  Article  Google Scholar 

  11. 11

    McMahon, D. P., Cheung, D. L. & Troisi, A. Why holes and electrons separate so well in polymer/fullerene photovoltaic cells. J. Phys. Chem. Lett. 2, 2737–2741 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Liu, A. et al. Control of electric field strength and orientation at the donor–acceptor interface in organic solar cells. Adv. Mater. 20, 1065–1070 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Gregg, B. A. Entropy of charge separation in organic photovoltaic cells: The benefit of higher dimensionality. J. Phys. Chem. Lett. 2, 3013–3015 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Jailaubekov, A. E. et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nature Mater. 12, 66–73 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Caruso, D. & Troisi, A. Long-range exciton dissociation in organic solar cells. Proc. Natl Acad. Sci. USA 109, 13498–13502 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Yost, S. R., Wang, L-P. & Van Voorhis, T. Molecular insight into the energy levels at the organic donor/acceptor interface: A quantum mechanics/molecular mechanics study. J. Phys. Chem. C 115, 14431–14436 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Rühle, V. et al. Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7, 3335–3345 (2011).

    Article  Google Scholar 

  18. 18

    Fu, Y-T., Risko, C. & Brédas, J-L. Intermixing at the pentacene-fullerene bilayer interface: A molecular dynamics study. Adv. Mater. 25, 878–882 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Muccioli, L. et al. Supramolecular organization of functional organic materials in the bulk and at organic/organic interfaces: A modeling and computer simulation approach. Top. Curr. Chem. 352, 39–101 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Mothy, S. et al. Tuning the interfacial electronic structure at organic heterojunctions by chemical design. J. Phys. Chem. Lett. 3, 2374–2378 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Verlaak, S. et al. Electronic structure and geminate pair energetics at organic–organic interfaces: The case of pentacene/C60 heterojunctions. Adv. Funct. Mater. 19, 3809–3814 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Linares, M. et al. On the interface dipole at the pentacene-fullerene heterojunction: A theoretical study. J. Phys. Chem. C 114, 3215–3224 (2010).

    CAS  Article  Google Scholar 

  23. 23

    May, F., Baumeier, B., Lennartz, C. & Andrienko, D. Can lattice models predict the density of states of amorphous organic semiconductors? Phys. Rev. Lett. 109, 136401 (2012).

    Article  Google Scholar 

  24. 24

    Idé, J. et al. Interfacial dipole and band bending in model pentacene/C60 heterojunctions. Int. J. Quantum Chem. 113, 580–584 (2013).

    Article  Google Scholar 

  25. 25

    Yost, S. R. & Van Voorhis, T. Electrostatic effects at organic semiconductor interfaces: A mechanism for “cold” exciton breakup. J. Phys. Chem. C 117, 5617–5625 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Idé, J. et al. Charge dissociation at interfaces between discotic liquid crystals: The surprising role of column mismatch. J. Am. Chem. Soc. 136, 2911–2920 (2014).

    Article  Google Scholar 

  27. 27

    Stone, A. J. The Theory of Intermolecular Forces (Clarendon Press, 1997).

    Google Scholar 

  28. 28

    De Leeuw, S. W., Perram, J. W. & Smith, E. R. Simulation of electrostatic systems in periodic boundary conditions. i. lattice sums and dielectric constants. Proc. R. Soc. Lond. A 373, 27–56 (1980).

    CAS  Article  Google Scholar 

  29. 29

    Chen, W., Qi, D-C., Huang, H., Gao, X. & Wee, A. T. S. Organic–organic heterojunction interfaces: Effect of molecular orientation. Adv. Funct. Mater. 21, 410–424 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Heimel, G., Salzmann, I., Duhm, S. & Koch, N. Design of organic semiconductors from molecular electrostatics. Chem. Mater. 23, 359–377 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Duhm, S. et al. Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nature Mater. 7, 326–332 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Garcia-Belmonte, G. & Bisquert, J. Open-circuit voltage limit caused by recombination through tail states in bulk heterojunction polymer-fullerene solar cells. Appl. Phys. Lett. 96, 113301 (2010).

    Article  Google Scholar 

  33. 33

    Schrader, M. et al. Comparative study of microscopic charge dynamics in crystalline acceptor-substituted oligothiophenes. J. Am. Chem. Soc. 134, 6052–6056 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Wilke, A. et al. Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Appl. Phys. Lett. 101, 233301 (2012).

    Article  Google Scholar 

  35. 35

    Widmer, J., Tietze, M., Leo, K. & Riede, M. Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23, 5814–5821 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Koster, L. J. A., Mihailetchi, V. D., Ramaker, R. & Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:Fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005).

    Article  Google Scholar 

  37. 37

    Potscavage, W. J., Sharma, A. & Kippelen, B. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758–1767 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer–fullerene solar cells. Nature Mater. 8, 904–909 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Maurano, A. et al. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: A comparison of four different donor polymers. Adv. Mater. 22, 4987–4992 (2010).

    CAS  Article  Google Scholar 

  40. 40

    Wynands, D. et al. Spectroscopic ellipsometry characterization of vacuum-deposited organic films for the application in organic solar cells. Org. Electron. 13, 885–893 (2012).

    CAS  Article  Google Scholar 

  41. 41

    Pfeiffer, M. et al. Organic photoactive device. US patent 8426727 (2013).

  42. 42

    Stone, A. J. Distributed multipole analysis: Stability for large basis sets. J. Chem. Theory Comput. 1, 1128–1132 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Thole, B. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350 (1981).

    CAS  Article  Google Scholar 

  44. 44

    Van Duijnen, P. T. & Swart, M. Molecular and atomic polarizabilities: Thole’s model revisited. J. Phys. Chem. A 102, 2399–2407 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Fitzner, R. et al. Correlation of π-conjugated oligomer structure with film morphology and organic solar cell performance. J. Am. Chem. Soc. 134, 11064–11067 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Bürckstümmer, H. et al. Efficient solution-processed bulk heterojunction solar cells by antiparallel supramolecular arrangement of dipolar donor–acceptor dyes. Angew. Chem. Int. Ed. 50, 11628–11632 (2011).

    Article  Google Scholar 

  47. 47

    Zhang, F. et al. Energy level alignment and morphology of interfaces between molecular and polymeric organic semiconductors. Org. Electron. 8, 606–614 (2007).

    CAS  Article  Google Scholar 

  48. 48

    Heimel, G. & Koch, N. in Interface Controlled Organic Thin Films Vol. 129 (eds Al-Shamery, K., Horowitz, G., Sitter, H. & Rubahn, H-G.) 141–145 (Springer, 2009).

    Google Scholar 

  49. 49

    Tietze, M. L. et al. Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C60 bulk heterojunction solar cells with varied mixing ratio. Phys. Rev. B 88, 085119 (2013).

    Article  Google Scholar 

  50. 50

    Kinoshita, Y., Hasobe, T. & Murata, H. Controlling open-circuit voltage of organic photovoltaic cells by inserting thin layer of Zn–phthalocyanine at pentacene/C60 interface. Jpn. J. Appl. Phys. 47, 1234–1237 (2008).

    CAS  Article  Google Scholar 

Download references


This work has been supported by the BMBF programme MEDOS (FKZ 03EK3503B). We are grateful to T. Bereau for critical reading of the manuscript and P. Bäuerle and C. Körner for fruitful collaborations.

Author information




C.P., B.B. and D.A. conceived and performed simulations. M.T., C.E. and K.L. contributed experimental results on DCVnTs. S.O., D.H., F.W. and K.M. contributed experimental results on merocyanines. C.P. and D.A. wrote the paper.

Corresponding authors

Correspondence to Carl Poelking or Denis Andrienko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poelking, C., Tietze, M., Elschner, C. et al. Impact of mesoscale order on open-circuit voltage in organic solar cells. Nature Mater 14, 434–439 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing