Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells

Subjects

Abstract

Different layered perovskite-related oxides are known to exhibit important electronic, magnetic and electrochemical properties. Owing to their excellent mixed-ionic and electronic conductivity and fast oxygen kinetics, cation layered double perovskite oxides such as PrBaCo2O5 in particular have exhibited excellent properties as solid oxide fuel cell oxygen electrodes1. Here, we show for the first time that related layered materials can be used as high-performance fuel electrodes. Good redox stability with tolerance to coking and sulphur contamination from hydrocarbon fuels is demonstrated for the layered perovskite anode PrBaMn2O5+δ (PBMO). The PBMO anode is fabricated by in situ annealing of Pr0.5Ba0.5MnO3−δ in fuel conditions and actual fuel cell operation is demonstrated. At 800 °C, layered PBMO shows high electrical conductivity of 8.16 S cm−1 in 5% H2 and demonstrates peak power densities of 1.7 and 1.3 W cm−2 at 850 °C using humidified hydrogen and propane fuels, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Principle of the approach to prepare A-site layered perovskite PrBaMn2O5+δ.
Figure 2: TEM analysis.
Figure 3: Electrical and redox properties of layered PrBaMn2O5+δ.
Figure 4: Electrochemical properties of layered PrBaMn2O5+δ anode with PrBaMn2O5+δ and Co–Fe catalyst in fuel cells.

References

  1. 1

    Choi, S et al. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2−xFexO5+δ . Sci. Rep. 3, 2426 (2013).

    Article  Google Scholar 

  2. 2

    Wang, W., Su, C., Wu, Y., Ran, R. & Shao, Z. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 113, 8104–8151 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Atkinson, A. et al. Advanced anodes for high-temperature fuel cells. Nature Mater. 3, 17–27 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Liu, M., Lynch, M. E., Blinn, K., Alamgir, F. M. & Choi, Y. Rational SOFC material design: New advances and tools. Mater. Today 14, 534–546 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Park, S., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Cheng, Z. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives. Energy Environ. Sci. 4, 4380–4409 (2011).

    CAS  Article  Google Scholar 

  7. 7

    He, H., Gorte, R. J. & Vohs, J. M. Highly sulfur tolerant Cu-ceria anodes for SOFCs. Electrochem. Solid State Lett. 8, A279–A280 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Zhan, Z. & Barnett, S. A. An octane-fueled solid oxide fuel cell. Science 308, 844–847 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Liu, M. et al. Direct octane fuel cells: A promising power for transportation. Nano Energy 1, 448–455 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Yang, L. et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−δ . Science 326, 126–129 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Ryu, K. H. & Haile, S. M. Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ion. 125, 355–367 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Sengodan, S, Yeo, H. J., Shin, J. Y. & Kim, G. Assessment of perovskite-type La0.8Sr0.2ScxMn1−xO3−δ oxides as an anode for intermediate temperature solid oxide fuel cells using hydrocarbon. J. Power Sources 196, 3083–3088 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Corre, G. Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Sengodan, S. et al. Electrochemical performance of YST infiltrated and Fe doped YST infiltrated YSZ anodes for IT-SOFC. ECS Electrochem. Lett. 2, F45–F49 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Tao, S. & Irvine, J. T. S. A redox-stable efficient anode for solid-oxide fuel cells. Nature Mater. 2, 320–323 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Huang, Y-H., Dass, R. I., Xing, Z-L. & Goodenough, J. B. Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254–257 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Yang, C. et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Shin, T. H., Ida, S. & Ishihara, T. Doped CeO2–LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells. J. Am. Chem. Soc. 48, 19399–19407 (2011).

    Article  Google Scholar 

  19. 19

    Kim, G., Corre, G., Irvine, J. T. S., Vohs, J. M. & Gorte, R. J. Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid State Lett. 11, B16–B19 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Trukhanov, S.V. et al. Study of A-site ordered PrBaMn2O6−δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter 17, 6495–6506 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Trukhanov, S. V., Trukhanov, A. V., Szymczak, H., Szymczak, R. & Baran, M. Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Taskin, A. A., Lavrov, A. N. & Ando, Y. Fast oxygen diffusion in A-site ordered perovskites. Prog. Solid State Chem. 35, 481–490 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Danilovic, N. et al. Correlation of fuel cell anode electrocatalytic and ex situ catalytic activity of perovskites La0.75Sr0.25Cr0.5X0.5O3−δ (X = Ti, Mn, Fe, Co). Chem. Mater. 22, 957–965 (2009).

    Article  Google Scholar 

  24. 24

    Motohashi, T. et al. Remarkable oxygen intake/release capability of BaYMn2O5+δ: Applications to oxygen storage technologies. Chem. Mater. 22, 3192–3196 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Oishi, M., Yashiro, K., Sato, K., Mizusaki, J. & Kawada, T. Oxygen nonstoichiometry and defect structure analysis of B-site mixed perovskite-type oxide (La, Sr)(Cr, M)O3−δ (M = Ti, Mn and Fe). J. Solid State Chem. 181, 177–184 (2008).

    Article  Google Scholar 

  26. 26

    Marrero-López, D. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ion. 180, 1672–1682 (2010).

    Article  Google Scholar 

  27. 27

    Volkan, A. G. & April, G. C. Survey of propane pyrolysis literature. Ind. Eng. Chem. Process Des. Dev. 16, 429–436 (1977).

    CAS  Article  Google Scholar 

  28. 28

    Sasaki, K. & Teraoka, Y. Equilibria in fuel cell gases I. Equilibrium compositions and reforming conditions. J. Electrochem. Soc. 150, A878–A884 (2003).

    CAS  Article  Google Scholar 

  29. 29

    Sengodan, S., Ahn, S., Shin, J. & Kim, G. Oxidation–reduction behavior of La0.8Sr0.2ScyMn1−yO3±δ (y = 0.2, 0.3, 0.4): Defect structure, thermodynamic and electrical properties. Solid State Ion. 228, 25–31 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) (20113020030060) grant by the Korea government Ministry of Trade, Industry and Energy, the (2013R1A2A2A04015706) through the National Research Foundation of Korea, funded by the Ministry of Science, ICT and Future Planning and the Basic Science Research Program (2013R1A2A2A01007170 and 2010-0021214) through the National Research Foundation of Korea funded by Ministry of Education. We thank The Royal Society for a Wolfson Merit Award (JI) and EPSRC for a research grant (EP/I022570/1).

Author information

Affiliations

Authors

Contributions

S.S., S.C. and A.J. contributed to fabricating the samples and conducted data analysis of all kinds of electrochemical experiment, SEM, coulometric titration, X-ray diffraction and gas chromatography. Y.W.J. fabricated samples and discussed electrochemical data. T.H.S. carried out the high-temperature X-ray diffraction and dilatometer analyses. H.Y.J. collected and analysed the TEM data. J.S., J.T.S.I. and G.K. conceived and designed the project. All authors contributed to writing the paper.

Corresponding authors

Correspondence to John T. S. Irvine or Guntae Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3075 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sengodan, S., Choi, S., Jun, A. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Mater 14, 205–209 (2015). https://doi.org/10.1038/nmat4166

Download citation

Further reading

Search

Quick links