Letter | Published:

Soft 3D acoustic metamaterial with negative index

Nature Materials volume 14, pages 384388 (2015) | Download Citation

Subjects

Abstract

Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s1,2,3,4,5,6,7,8. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices9. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of ‘ultra-slow’ Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost − 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & (eds) Physics of Negative Refraction and Negative Index Materials (Springer, 2007).

  2. 2.

    et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature 423, 604–605 (2003).

  3. 3.

    et al. Sound attenuation by sculpture. Nature 378, 241 (1995).

  4. 4.

    , & Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

  5. 5.

    et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

  6. 6.

    et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

  7. 7.

    & Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

  8. 8.

    , & Metamaterials and negative refractive index. Science 305, 788–792 (2004).

  9. 9.

    Metamaterials beyond optics. Science 342, 939–940 (2013).

  10. 10.

    et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

  11. 11.

    et al. Composite acoustic medium with simultaneously negative density and modulus. Phys. Rev. Lett. 104, 054301 (2010).

  12. 12.

    & Negative acoustic index metamaterial. Phys. Rev. B 83, 214304 (2011).

  13. 13.

    & Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

  14. 14.

    et al. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

  15. 15.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3999 (2000).

  16. 16.

    et al. Metamaterials beyond electromagnetism. Rep. Prog. Phys. 76, 126501 (2013).

  17. 17.

    et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

  18. 18.

    et al. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

  19. 19.

    , & Soft acoustic metamaterials. Science 342, 323–324 (2013).

  20. 20.

    & An acoustic metafluid: Realizing a broadband acoustic cloak. New J. Phys. 10, 115032 (2008).

  21. 21.

    Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009).

  22. 22.

    et al. Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012).

  23. 23.

    et al. Tuning Mie scattering resonances in soft materials with magnetic fields. Phys. Rev. Lett. 111, 264301 (2013).

  24. 24.

    & Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

  25. 25.

    et al. Soft silicone rubber in phononic structures: Correct elastic moduli. Phys. Rev. B 88, 094102 (2013).

  26. 26.

    Propagation of Sound in Porous Media (Springer, 1993).

  27. 27.

    , & Enhanced and reduced transmission of acoustic waves with bubble meta-screens. Appl. Phys. Lett. 99, 221906 (2011).

  28. 28.

    , & Spaces of electromagnetic and mechanical constitutive parameters for dissipative media with either positive or negative index. J. Appl. Phys. 115, 024902 (2014).

  29. 29.

    & Porous polymer particles - A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 37, 365–405 (2012).

  30. 30.

    et al. Sharp acoustic multipolar-resonances in highly monodisperse emulsions. Appl. Phys. Lett. 101, 011913 (2012).

  31. 31.

    et al. Sound velocity and attenuation in bubbly gels measured by transmission experiments. J. Acoust. Soc. Am. 123, 1931–1940 (2008).

  32. 32.

    et al. Group velocity in strongly scattering media. Science 271, 634–637 (1996).

  33. 33.

    & Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961).

Download references

Acknowledgements

This work was supported by the Agence Nationale pour la Recherche (Grant 2011-BS0902101 Metakoustik-Aerospace Valley) and the US Air Force European Office of Aerospace Research and Development (Grant FA8655-12-1-2067). This work was performed under the auspices of the Labex AMADEUS ANR-10-LABX-0042-AMADEUS with the help of French state Initiative d’Excellence IdEx ANR-10-IDEX-003-02. We thank G. Pibre from Bluestar Silicones for fruitful advice and providing us with the silicone rubber, and J. Valencony (Siltech Corp.) for the surfactants.

Author information

Affiliations

  1. University of Bordeaux, CNRS, I2M-APY, UMR 5295, 33405 Talence, France

    • Thomas Brunet
    • , Benoit Mascaro
    • , Olivier Poncelet
    •  & Christophe Aristégui
  2. University of Bordeaux, CNRS, CRPP, UPR 8641, 33600 Pessac, France

    • Aurore Merlin
    • , Kevin Zimny
    •  & Olivier Mondain-Monval
  3. University of Bordeaux, CNRS, Solvay, LOF, UMR 5258, 33608 Pessac, France

    • Jacques Leng

Authors

  1. Search for Thomas Brunet in:

  2. Search for Aurore Merlin in:

  3. Search for Benoit Mascaro in:

  4. Search for Kevin Zimny in:

  5. Search for Jacques Leng in:

  6. Search for Olivier Poncelet in:

  7. Search for Christophe Aristégui in:

  8. Search for Olivier Mondain-Monval in:

Contributions

T.B., O.M-M., J.L., O.P. and C.A. designed the project. A.M. synthesized the macroporous soft silicone rubber microbeads with the help of K.Z. Formulation aspects were supervised by O.M-M., A.M. set up the microfluidics with the advice of J.L., T.B. and B.M. conducted the acoustical measurements and performed the calculations under the guidance of C.A. and O.P. for the theoretical aspects. T.B. wrote the paper in collaboration with C.A., O.P., J.L. and O.M-M.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Thomas Brunet.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4164

Further reading