Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

Subjects

Abstract

Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell–material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Light-triggered activation of cell adhesion activity of caged RGD peptide on hydrogels.
Figure 2: Transdermal activation of in vivo inflammatory cell adhesion.
Figure 3: Light-triggered spatial patterning of in vivo cell adhesion.
Figure 4: Time-regulated in vivo activation of RGD peptide modulates fibrous encapsulation of implanted biomaterials.
Figure 5: Light-based activation of cell-adhesive peptide promotes vascularization of implanted biomaterials.

References

  1. Hynes, R. O. The extracellular matrix: Not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  Article  Google Scholar 

  2. Hynes, R. O. Integrins: Bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  Article  Google Scholar 

  3. Wolfenson, H., Lavelin, I. & Geiger, B. Dynamic regulation of the structure and functions of integrin adhesions. Dev. Cell 24, 447–458 (2013).

    CAS  Article  Google Scholar 

  4. Schiller, H. B. & Fassler, R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 14, 509–519 (2013).

    CAS  Article  Google Scholar 

  5. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer Metast. Rev. 28, 113–127 (2009).

    Article  Google Scholar 

  6. Ranga, A. & Lutolf, M. P. High-throughput approaches for the analysis of extrinsic regulators of stem cell fate. Curr. Opin. Cell Biol. 24, 236–244 (2012).

    CAS  Article  Google Scholar 

  7. Fisher, O. Z., Khademhosseini, A., Langer, R. & Peppas, N. A. Bioinspired materials for controlling stem cell fate. Acc. Chem. Res. 43, 419–428 (2010).

    CAS  Article  Google Scholar 

  8. Pashuck, E. T. & Stevens, M. M. Designing regenerative biomaterial therapies for the clinic. Sci. Transl. Med. 4, 160sr164 (2012).

    Article  Google Scholar 

  9. Rice, J. J. et al. Engineering the regenerative microenvironment with biomaterials. Adv. Healthc. Mater. 2, 57–71 (2013).

    CAS  Article  Google Scholar 

  10. Vogel, V. & Sheetz, M. Local force and geometry sensing regulate cell functions. Nature Rev. Mol. Cell Biol. 7, 265–275 (2006).

    CAS  Article  Google Scholar 

  11. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature Mater. 8, 659–664 (2009).

    CAS  Article  Google Scholar 

  12. Lohmuller, T. et al. Nanopatterning by block copolymer micelle nanolithography and bioinspired applications. Biointerphases 6, 1–12 (2011).

    Article  Google Scholar 

  13. Stephanopoulos, N., Ortony, J. H. & Stupp, S. I. Self-assembly for the synthesis of functional biomaterials. Acta Mater. 61, 912–930 (2013).

    CAS  Article  Google Scholar 

  14. Petersen, S. et al. Phototriggering of cell adhesion by caged cyclic RGD peptides. Angew. Chem. Int. Ed. 47, 3192–3195 (2008).

    CAS  Article  Google Scholar 

  15. Yeo, W. S., Yousaf, M. N. & Mrksich, M. Dynamic interfaces between cells and surfaces: Electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125, 14994–14995 (2003).

    CAS  Article  Google Scholar 

  16. Ohmuro-Matsuyama, Y. & Tatsu, Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008).

    CAS  Article  Google Scholar 

  17. Liu, D. B., Xie, Y. Y., Shao, H. W. & Jiang, X. Y. Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem. Int. Ed. 48, 4406–4408 (2009).

    CAS  Article  Google Scholar 

  18. Wirkner, M. et al. Triggered cell release from materials using bioadhesive photocleavable linkers. Adv. Mater. 23, 3907–3910 (2011).

    CAS  Article  Google Scholar 

  19. Boekhoven, J., Rubert Perez, C. M., Sur, S., Worthy, A. & Stupp, S. I. Dynamic display of bioactivity through host-guest chemistry. Angew. Chem. Int. Ed. 52, 12077–12080 (2013).

    CAS  Article  Google Scholar 

  20. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    CAS  Article  Google Scholar 

  21. Mosiewicz, K. A. et al. In situ cell manipulation through enzymatic hydrogel photopatterning. Nature Mater. 12, 1072–1078 (2013).

    CAS  Article  Google Scholar 

  22. Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999).

    CAS  Article  Google Scholar 

  23. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    CAS  Article  Google Scholar 

  24. Phelps, E. A. et al. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv. Mater. 24, 64–70 (2012).

    CAS  Article  Google Scholar 

  25. Franz, S., Rammelt, S., Scharnweber, D. & Simon, J. C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32, 6692–6709 (2011).

    CAS  Article  Google Scholar 

  26. Phelps, E. A., Headen, D. M., Taylor, W. R., Thule, P. M. & Garcia, A. J. Vasculogenic bio-synthetic hydrogel for enhancement of pancreatic islet engraftment and function in type 1 diabetes. Biomaterials 34, 4602–4611 (2013).

    CAS  Article  Google Scholar 

  27. Phelps, E. A., Landazuri, N., Thule, P. M., Taylor, W. R. & Garcia, A. J. Bioartificial matrices for therapeutic vascularization. Proc. Natl Acad. Sci. USA 107, 3323–3328 (2010).

    CAS  Article  Google Scholar 

  28. Lynn, A. D., Blakney, A. K., Kyriakides, T. R. & Bryant, S. J. Temporal progression of the host response to implanted poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 96, 621–631 (2011).

    Article  Google Scholar 

  29. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).

    CAS  Article  Google Scholar 

  30. Timko, B. P. et al. Near-infrared-actuated devices for remotely controlled drug delivery. Proc. Natl Acad. Sci. USA 111, 1349–1354 (2014).

    CAS  Article  Google Scholar 

  31. Xia, Y. et al. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 44, 914–924 (2011).

    CAS  Article  Google Scholar 

  32. Zaveri, T. D., Lewis, J. S., Dolgova, N. V., Clare-Salzler, M. J. & Keselowsky, B. G. Integrin-directed modulation of macrophage responses to biomaterials. Biomaterials 35, 3504–3515 (2014).

    CAS  Article  Google Scholar 

  33. Brooks, P. C., Clark, R. A. & Cheresh, D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Materials World Network Program grants DFG AOBJ 569628 (AdC) and NSF DMR-0909002 (A.J.G.) and the National Institutes of Health (NIH) grants R01-AR062368 and R01-AR062920 (A.J.G.). T.T.L. and J.R.G. were supported by the Cell and Tissue Engineering NIH Biotechnology Training Grant (T32 GM-008433).

Author information

Authors and Affiliations

Authors

Contributions

T.T.L. and J.R.G. conducted all experiments, collected data and performed data analysis. J.I.P., S.W. and Z.S. synthesized and characterized caged compounds. A.S. performed the in vivo uncaging efficiency study, and A.S. and E.A.P. assisted with hydrogel development and implantation procedures. A.J.G. and A.d.C. developed the concept, and together with T.T.L. contributed to the planning and design of the project. T.T.L., A.d.C. and A.J.G. wrote the manuscript and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrés J. García.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3279 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, T., García, J., Paez, J. et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nature Mater 14, 352–360 (2015). https://doi.org/10.1038/nmat4157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4157

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing