Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational self-assembly of a one-component icosahedral quasicrystal

Abstract

Icosahedral quasicrystals (IQCs) are a form of matter that is ordered but not periodic in any direction. All reported IQCs are intermetallic compounds and either of face-centred-icosahedral or primitive-icosahedral type, and the positions of their atoms have been resolved from diffraction data. However, unlike axially symmetric quasicrystals, IQCs have not been observed in non-atomic (that is, micellar or nanoparticle) systems, where real-space information would be directly available. Here, we show that an IQC can be assembled by means of molecular dynamics simulations from a one-component system of particles interacting via a tunable, isotropic pair potential extending only to the third-neighbour shell. The IQC is body-centred, self-assembles from a fluid phase, and in parameter space neighbours clathrates and other tetrahedrally bonded crystals. Our findings elucidate the structure and dynamics of the IQC, and suggest routes to search for it and design it in soft matter and nanoscale systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of a one-component icosahedral quasicrystal.
Figure 2: Characterization and dynamics of the quasicrystal.
Figure 3: Crystalline phases competing with the quasicrystal.
Figure 4: Appearance of high-symmetry clusters in the icosahedral quasicrystal.
Figure 5: Geometric modelling and structure solution of the icosahedral quasicrystal using higher-dimensional crystallography.

Similar content being viewed by others

References

  1. Caspar, D. L. D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  2. Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R. & Herlach, D. M. Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  3. Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    Article  CAS  Google Scholar 

  4. Wales, D. J. & Doye, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article  CAS  Google Scholar 

  5. Hubert, H. et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

    Article  Google Scholar 

  6. de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nature Mater.http://dx.doi.org/10.1038/nmat4072 (2014)

  7. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  8. Levine, D. & Steinhardt, P. J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477–2480 (1984).

    Article  CAS  Google Scholar 

  9. Man, W., Megens, M., Steinhardt, P. J. & Chaikin, P. M. Experimental measurement of the photonic properties of icosahedral quasicrystals. Nature 436, 993–996 (2005).

    Article  CAS  Google Scholar 

  10. Dubois, J-M. Properties and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 41, 6760–6777 (2012).

    Article  CAS  Google Scholar 

  11. Tsai, A-P. Discovery of stable icosahedral quasicrystals: Progress in understanding structure and properties. Chem. Soc. Rev. 42, 5352–5365 (2013).

    Article  CAS  Google Scholar 

  12. Bindi, L., Steinhardt, P. J., Yao, N. & Lu, P. J. Natural quasicrystals. Science 324, 1306–1309 (2009).

    Article  CAS  Google Scholar 

  13. Takakura, H., Gómez, C. P., Yamamoto, A., De Boissieu, M. & Tsai, A. P. Atomic structure of the binary icosahedral Yb–Cd quasicrystal. Nature Mater. 6, 58–63 (2007).

    Article  CAS  Google Scholar 

  14. Yamamoto, A. Crystallography of quasiperiodic crystals. Acta Crystallogr. A 52, 509–560 (1996).

    Article  Google Scholar 

  15. Steurer, W. & Deloudi, S. Crystallography of Quasicrystals: Concepts, Methods and Structures (Springer Series in Materials Science, 2009).

    Google Scholar 

  16. Quiquandon, M. & Gratias, D. About the atomic structures of icosahedral quasicrystals. C. R. Phys. 15, 18–29 (2014).

    Article  CAS  Google Scholar 

  17. Rokhsar, D. S., Mermin, N. D. & Wright, D. C. Rudimentary quasicrystallography: The icosahedral and decagonal reciprocal lattices. Phys. Rev. B 35, 5487–5495 (1987).

    Article  CAS  Google Scholar 

  18. Edagawa, K., Suzuki, K. & Takeuchi, S. High resolution transmission electron microscopy observation of thermally fluctuating phasons in decagonal Al–Cu–Co. Phys. Rev. Lett. 85, 1674–1677 (2000).

    Article  CAS  Google Scholar 

  19. De Boissieu, M., Francoual, S., Kaneko, Y. & Ishimasa, T. Diffuse scattering and phason fluctuations in the Zn–Mg–Sc icosahedral quasicrystal and its Zn–Sc periodic approximant. Phys. Rev. Lett. 95, 105503 (2005).

    Article  CAS  Google Scholar 

  20. Zeng, X. et al. Supramolecular dendritic liquid quasicrystals. Nature 428, 157–160 (2004).

    Article  CAS  Google Scholar 

  21. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  Google Scholar 

  22. Xiao, C., Fujita, N., Miyasaka, K., Sakamoto, Y. & Terasaki, O. Dodecagonal tiling in mesoporous silica. Nature 487, 349–353 (2012).

    Article  CAS  Google Scholar 

  23. Dzugutov, M. Formation of a dodecagonal quasicrystalline phase in a simple monatomic liquid. Phys. Rev. Lett. 70, 2924–2927 (1993).

    Article  CAS  Google Scholar 

  24. Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).

    Article  CAS  Google Scholar 

  25. Iacovella, C. R., Keys, A. S. & Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl Acad. Sci. USA 108, 20935–20940 (2011).

    Article  Google Scholar 

  26. Dmitrienko, V. E. & Astaf’ev, S. B. Oscillating interatomic potentials and growth of icosahedral quasicrystals. Phys. Rev. Lett. 75, 1538–1541 (1995).

    Article  CAS  Google Scholar 

  27. Dmitrienko, V. E., Astaf’ev, S. B. & Kléman, M. Monte Carlo simulations of icosahedral quasicrystal growth and melting. Phys. Rev. B 59, 286–293 (1999).

    Article  CAS  Google Scholar 

  28. Engel, M. & Trebin, H-R. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 98, 225505 (2007).

    Article  CAS  Google Scholar 

  29. Dotera, T., Oshiro, T. & Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 506, 208–211 (2014).

    Article  CAS  Google Scholar 

  30. Trambly de Laissardière, G., Nguyen-Manh, D. & Mayou, D. Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides. Prog. Mater. Sci. 50, 679–788 (2005).

    Article  CAS  Google Scholar 

  31. Elenius, M., Zetterling, F. H. M., Dzugutov, M., Fredrickson, D. C. & Lidin, S. Structural model for octagonal quasicrystals derived from octagonal symmetry elements arising in β-Mn crystallization of a simple monatomic liquid. Phys. Rev. B 79, 144201 (2009).

    Article  CAS  Google Scholar 

  32. Mihalkovič, M. & Henley, C. L. Empirical oscillating potentials for alloys from ab initio fits and the prediction of quasicrystal-related structures in the Al–Cu–Sc system. Phys. Rev. B 85, 092102 (2012).

    Article  CAS  Google Scholar 

  33. Rechtsman, M. C., Stillinger, F. H. & Torquato, S. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions. Phys. Rev. E 75, 1–7 (2007).

    Google Scholar 

  34. Jain, A., Errington, J. R. & Truskett, T. M. Inverse design of simple pairwise interactions with low-coordinated 3D lattice ground states. Soft Matter 9, 3866–3870 (2013).

    Article  CAS  Google Scholar 

  35. Barkan, K., Engel, M. & Lifshitz, R. Controlled self-assembly of periodic and aperiodic cluster crystals. Phys. Rev. Lett. 113, 098304 (2014).

    Article  CAS  Google Scholar 

  36. Keys, A. S. & Glotzer, S. C. How do quasicrystals grow? Phys. Rev. Lett. 99, 235503 (2007).

    Article  CAS  Google Scholar 

  37. Steurer, W. On a realistic growth mechanism for quasicrystals. Z. Anorg. Allg. Chem. 637, 1943–1947 (2011).

    Article  CAS  Google Scholar 

  38. Achim, C. V., Schmiedeberg, M. & Löwen, H. Growth modes of quasicrystals. Phys. Rev. Lett. 112, 255501 (2014).

    Article  CAS  Google Scholar 

  39. Crain, J. et al. Theoretical study of high-density phases of covalent semiconductors. I. Ab initio treatment. Phys. Rev. B 49, 5329–5340 (1994).

    Article  CAS  Google Scholar 

  40. Shoemaker, D. P. & Shoemaker, C. B. Concerning the relative numbers of atomic coordination types in tetrahedrally close packed metal structures. Acta Crystallogr. B 42, 3–11 (1986).

    Article  Google Scholar 

  41. Gryko, J. et al. Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 62, R7707–R7710 (2000).

    Article  CAS  Google Scholar 

  42. Jacobson, L. C., Hujo, W. & Molinero, V. Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water. J. Phys. Chem. B 113, 10298–10307 (2009).

    Article  CAS  Google Scholar 

  43. Ma, Y., Oganov, A. R. & Xie, Y. High-pressure structures of lithium, potassium, and rubidium predicted by an ab initio evolutionary algorithm. Phys. Rev. B 78, 014102 (2008).

    Article  CAS  Google Scholar 

  44. Takeda, Y., Kanamura, F., Shimada, M. & Koizumi, M. The crystal structure of BaNiO3 . Acta Crystallogr. B 32, 2464–2466 (1976).

    Article  Google Scholar 

  45. Ishii, Y. Propagating local positional order in tetrahedrally bonded systems. Acta Crystallogr. A 44, 987–998 (1988).

    Article  Google Scholar 

  46. Peters, J. & Trebin, H-R. Tetracoordinated quasicrystals. Phys. Rev. B 43, 1820–1823 (1991).

    Article  CAS  Google Scholar 

  47. Dmitrienko, V. E. & Kléman, M. Tetrahedral structures with icosahedral order and their relation to quasicrystals. Crystallogr. Rep. 46, 527–533 (2001).

    Article  Google Scholar 

  48. Bergman, G., Waugh, J. L. T. & Pauling, L. The crystal structure of the metallic phase Mg32(Al, Zn)49. Acta Crystallogr. 10, 254–259 (1957).

    Article  CAS  Google Scholar 

  49. Macfarlane, R. J., Jones, M. R., Lee, B., Auyeung, E. & Mirkin, C. A. Topotactic interconversion of nanoparticle superlattices. Science 341, 1222–1225 (2013).

    Article  CAS  Google Scholar 

  50. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  CAS  Google Scholar 

  51. Johnston, J. C., Kastelowitz, N. & Molinero, V. Liquid to quasicrystal transition in bilayer water. J. Chem. Phys. 133, 154516 (2010).

    Article  CAS  Google Scholar 

  52. Johnston, J. C., Phippen, S. & Molinero, V. A single-component silicon quasicrystal. J. Phys. Chem. Lett. 2, 384–388 (2011).

    Article  CAS  Google Scholar 

  53. Anderson, J. A., Lorenz, C. D. & Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227, 5342–5359 (2008).

    Article  Google Scholar 

  54. Anderson, J. A. & Glotzer, S. C. The development and expansion of HOOMD-blue through six years of GPU proliferation. Preprint at http://arXiv.org/abs/1308.5587 (2013)

Download references

Acknowledgements

This material is based on work supported in part by the DOD/ASD(R&E) under Award No. N00244-09-1-0062 (M.E. and S.C.G.), by the US Army Research Office under Grant Award No. W911NF-10-1-0518 (S.C.G.), by the University of Michigan CEMRI for Photonics and Multiscale Nanomaterials (C-PHOM) funded by the National Science Foundation Materials Research Science and Engineering Center program DMR 1120923 (P.F.D.), and by a Simons Investigator award from the Simons Foundation to S.C.G. Simulations were performed on a GPU cluster managed by the University of Michigan’s Center for advanced computing and also on resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the US Department of Energy under contract DE-AC02-06CH11357 (C.L.P.). C.L.P. was funded by the Office of the Director through the Named Postdoctoral Fellowship Program (Aneesur Rahman Postdoctoral Fellowship), Argonne National Laboratory. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the DOD/ASD(R&E).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the interaction potential design and the simulation set-up. M.E. performed data analysis of simulation results and studies of the larger configurations. P.F.D. and C.L.P. carried out numerical explorations of parameter space. S.C.G. coordinated and supervised the work. All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Michael Engel or Sharon C. Glotzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 18199 kb)

Supplementary Information

Supplementary Information (HTML 1311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engel, M., Damasceno, P., Phillips, C. et al. Computational self-assembly of a one-component icosahedral quasicrystal. Nature Mater 14, 109–116 (2015). https://doi.org/10.1038/nmat4152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing