Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropic shrinkage of an oxide glass

Subjects

Abstract

Entropic elasticity, a property typical of rubbers and well known in organic polymers with appropriate network structures, is not known to occur in oxide glasses1,2. Here, we report the occurrence of entropic elasticity in phosphate-glass fibres with highly anisotropic structures, drawn by mechanical elongation from supercooled liquids. We observed a large lengthwise shrinkage of ~35% for phosphate glasses with an enhanced one-dimensional structure, as well as a distinct endotherm on reheating them up to temperatures between that of the glass transition temperature and the softening temperature. Our results strongly suggest the possibility of designing oxide glasses with a rubbery nature at high temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model structure of an oxide glass with a preferentially oriented one-dimensional structure.
Figure 2: Characteristics of alkali metaphosphate glass structure.
Figure 3: Shrinkage behaviour of anisotropic LiNaKCsPO3 glass.
Figure 4: Shrinkage of alkali metaphosphate glasses.
Figure 5: Differential scanning calorimetry curves of anisotropic and isotropic LiNaKCsPO3 glasses.

Similar content being viewed by others

References

  1. Treloar, L. R. G. The Physics of Rubber Elasticity 3rd edn (Oxford Univ. Press, 2005).

    Google Scholar 

  2. Harper, C. A. Handbook of Plastics and Elastomers: Chap. 1 Fundamentals of Plastics and Elastomers (McGraw-Hill, 1975).

    Google Scholar 

  3. Shang, H. & Rouxel, T. Creep behavior of soda-lime glass in the 100–500 K temperature range by indentation creep test. J. Am. Ceram. Soc. 88, 2625–2628 (2005).

    Article  CAS  Google Scholar 

  4. Rouxel, T. Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007).

    Article  CAS  Google Scholar 

  5. Eisenberg, A., Saito, S. & Sasada, T. Viscoelastic relaxation mechanism of inorganic polymers. V: Counterion effects in bulk polyelectrolytes. J. Macromol. Sci. A 1, 121–134 (1967).

    Article  CAS  Google Scholar 

  6. Eisenberg, A. & Takahashi, K. Viscoelasticity of silicate polymers and its structural implications. J. Non-Cryst. Solids 3, 279–293 (1970).

    Article  CAS  Google Scholar 

  7. Pelletier, J. M., Perez, J., Duffrene, L. & Sekkat, A. Evidence for a residual elastic modulus in inorganic glasses by mechanical spectroscopy. J. Non-Cryst. Solids 258, 119–130 (1999).

    Article  CAS  Google Scholar 

  8. Roundy, D. & Rogers, M. Exploring the thermodynamics of a rubber band. Am. J. Phys. 81, 20–23 (2013).

    Article  Google Scholar 

  9. Eisenberg, A. & Teter, L. A. A relation between the relaxation mechanism and the distribution of relaxation times. J. Polym. Sci. Pol. Lett. 7, 471–475 (1969).

    Article  CAS  Google Scholar 

  10. Stockhorst, H. & Brückner, R. Structure sensitive measurements on phosphate glass fibers. J. Non-Cryst. Solids 85, 105–126 (1986).

    Article  CAS  Google Scholar 

  11. Brückner, R. Anisotropic glasses and glass melts — A survey. Glastech. Ber. Glass Sci. Technol. 69, 396–411 (1996).

    Google Scholar 

  12. Brow, R. K. Review: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263–264, 1–28 (2000).

    Article  Google Scholar 

  13. Nesbitt, H. W. et al. Bridging, non-bridging and free O2− oxygen in Na2O-SiO2 glasses: An X-ray photoelectron spectroscopic (XPS) and nuclear magnetic resonance (NMR) study. J. Non-Cryst. Solids 357, 170–180 (2011).

    Article  CAS  Google Scholar 

  14. Micoulaut, M. & Phillips, J. C. Onset of rigidity in glasses: From random to self-organized networks. J. Non-Cryst. Solids 353, 1732–1740 (2007).

    Article  CAS  Google Scholar 

  15. Novita, D. I., Boolchand, P., Malki, M. & Micoulaut, M. Fast-ion conduction and flexibility of glassy networks. Phys. Rev. Lett. 98, 195501 (2007).

    Article  Google Scholar 

  16. Wong, J. & Angell, C. A. Application of spectroscopy in the study of glassy solids, Part II. Infrared, Raman, EPR, and NMR spectral studies. Appl. Spectrosc. Rev. 4, 155–232 (1971).

    Article  CAS  Google Scholar 

  17. Meyer, K. Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy. J. Non-Cryst. Solids 209, 227–239 (1997).

    Article  CAS  Google Scholar 

  18. Nelson, B. N. & Exarhos, G. J. Vibrational spectroscopy of cation-site interactions in phosphate glasses. J. Chem. Phys. 71, 2739–2747 (1979).

    Article  CAS  Google Scholar 

  19. Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    Article  CAS  Google Scholar 

  20. Eisenberg, A. & Saito, S. Possible experimental equivalence of the Gibbs–DiMarzio and free-volume theories of the glass transition. J. Chem. Phys. 45, 1673–1678 (1966).

    Article  CAS  Google Scholar 

  21. Kohara, S. et al. A horizontal two-axis diffractometer for high-energy X-ray diffraction using synchrotron radiation on bending magnet beamline BL04B2 at SPring-8. Nucl. Instrum. Methods 467, 1030–1033 (2001).

    Article  Google Scholar 

  22. Greaves, G. N. S. Sen. Inorganic glasses, glass-forming liquids and amorphizing solids. Adv. Phys. 56, 1–166 (2007).

    Article  CAS  Google Scholar 

  23. Zarzycki, J. Glasses and the Vitreous State Ch. 9 (Cambridge Univ. Press, 1991).

    Google Scholar 

  24. Duffrene, L., Gy, R., Burlet, H. & Piques, R. Viscoelastic behavior of a soda-lime-silica glass: Inadequacy of the KWW function. J. Non-Cryst. Solids 215, 208–217 (1997).

    Article  CAS  Google Scholar 

  25. Suzuki, S., Takahashi, M., Kobayashi, T. & Imaoka, M. Retarded elasticity in B2O3–GeO2 glasses. J. Non-Cryst. Solids 46, 163–169 (1981).

    Article  CAS  Google Scholar 

  26. Ya, M., Deubener, J. & Yue, Y. Enthalpy and anisotropy relaxation of glass fibers. J. Am. Ceram. Soc. 91, 745–752 (2008).

    Article  CAS  Google Scholar 

  27. Martin, B., Wondraczek, L., Deubener, J. & Yue, Y. Mechanically induced excess enthalpy in inorganic glasses. Appl. Phys. Lett. 86, 121917 (2005).

    Article  Google Scholar 

  28. Hornbøll, L., Lönnroth, N. & Yue, Y. Energy release in isothermally stretched silicate glass fibers. J. Am. Ceram. Soc. 89, 70–74 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

A part of the present research was supported by the fund from the MEXT Element Strategy Initiative to form core research centres. We would like to thank S. Kohara and H. Tajiri (Japan Synchrotron Radiation Research Institute, JASRI), Y. Benino (Okayama University), and N. Shimizu and H. Takagi (High Energy Accelerator Research Organization, KEK) for insightful discussions. High-energy X-ray diffraction experiments were performed at the BL04B2 beamline of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (Proposal No. 2014A1096).

Author information

Authors and Affiliations

Authors

Contributions

S.Inaba and S.Ito designed and ran the experiments and analysed the data. All authors discussed the results, commented on the study and co-wrote the manuscript.

Corresponding author

Correspondence to Seiji Inaba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1202 kb)

Supplementary Information

Supplementary Movie S1 (MOV 629 kb)

Supplementary Information

Supplementary Movie S2 (MOV 840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inaba, S., Hosono, H. & Ito, S. Entropic shrinkage of an oxide glass. Nature Mater 14, 312–317 (2015). https://doi.org/10.1038/nmat4151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing