Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Negative capacitance in a ferroelectric capacitor

Abstract

The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny1,2,3,4,5. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive1,2,3. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time—in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this ‘inductance’-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Energy landscape description of the ferroelectric negative capacitance.
Figure 2: Transient response of a ferroelectric capacitor.
Figure 3: Experimental measurement of negative capacitance.
Figure 4: Simulation of the time dynamics of the ferroelectric switching.

References

  1. 1

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Zhirnov, V. V. & Cavin, R. K. Negative capacitance to the rescue. Nature Nanotech. 3, 77–78 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor. Science 327, 1600–1601 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Theis, T. N. & Solomon, P. M. In quest of the next switch: Prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor. Proc. IEEE 98, 2005–2014 (2010).

    Article  Google Scholar 

  5. 5

    Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Dubourdieu, C. et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nature Nanotech. 8, 748–754 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Salahuddin, S. & Datta, S. Proc. Intl. Electron Devices Meeting (IEDM) (IEEE, 2008).

    Google Scholar 

  8. 8

    Rusu, A., Salvatore, G. A., Jiménez, D. & Ionescu, A. M. Proc. Intl. Electron Devices Meeting (IEDM) (IEEE, 2010).

    Google Scholar 

  9. 9

    Khan, A. I. et al. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99, 113501 (2011).

    Article  Google Scholar 

  10. 10

    Appleby, D. J. et al. Experimental observation of negative capacitance in ferroelectrics at room temperature. Nano Lett. 14, 3864–3868 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Gao, W. et al. Room-temperature negative capacitance in a ferroelectric–dielectric superlattice heterostructure. Nano Lett. 14, 5814–5819 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Khan, A. I., Yeung, C., Hu, C. & Salahuddin, S. Proc. Intl. Electron Devices Meeting (IEDM) (IEEE, 2011).

    Google Scholar 

  13. 13

    Salvatore, G. A., Rusu, A. & Ionescu, A. M. Experimental confirmation of temperature dependent negative capacitance in ferroelectric field effect transistor. Appl. Phys. Lett. 100, 163504 (2012).

    Article  Google Scholar 

  14. 14

    Then, H. W. et al. Proc. Intl. Electron Devices Meeting (IEDM) (IEEE, 2013).

    Google Scholar 

  15. 15

    The International Technology Roadmap for Semiconductors, Emerging Research Devices (2011); www.itrs.net/Links/2011itrs/home2011.htm

  16. 16

    Landau, L. D. & Khalatnikov, I. M. On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk 96, 469–472 (1954).

    Google Scholar 

  17. 17

    Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Clarendon, 2001).

    Book  Google Scholar 

  18. 18

    Merz, W. J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J. Appl. Phys. 27, 938–943 (1956).

    CAS  Article  Google Scholar 

  19. 19

    Bratkovsky, A. M. & Levanyuk, A. P. Very large dielectric response of thin ferroelectric films with the dead layers. Phys. Rev. B 63, 132103 (2001).

    Article  Google Scholar 

  20. 20

    Bratkovsky, A. M. & Levanyuk, A. P. Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl. Phys. Lett. 89, 253108 (2006).

    Article  Google Scholar 

  21. 21

    Larsen, P. K. et al. Nanosecond switching of thin ferroelectric films. Appl. Phys. Lett. 59, 611–613 (1991).

    CAS  Article  Google Scholar 

  22. 22

    Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Jiang, A. Q. et al. Subpicosecond domain switching in discrete regions of Pb(Zr0.35Ti0.65)O3 thick films. Adv. Funct. Mater. 22, 2148–2153 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Jana, R. K., Snider, G. L. & Jena, D. On the possibility of sub 60 mV/decade subthreshold switching in piezoelectric gate barrier transistors. Phys. Status Solidi C 10, 1469–1472 (2013).

    CAS  Article  Google Scholar 

  25. 25

    AbdelGhany, M. & Szkopek, T. Extreme sub-threshold swing in tunnelling relays. Appl. Phys. Lett. 104, 013509 (2014).

    Article  Google Scholar 

  26. 26

    Masuduzzaman, M. & Alam, M. A. Effective nanometer airgap of NEMS devices using negative capacitance of ferroelectric materials. Nano Lett. 14, 3160–3165 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    CAS  Article  Google Scholar 

  28. 28

    Li, L. et al. Very large capacitance enhancement in a two-dimensional electron system. Science 332, 825–828 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Office of Naval Research (ONR), the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA and the NSF E3S Center at Berkeley. A.I.K. acknowledges the Qualcomm Innovation Fellowship 2012–2013.

Author information

Affiliations

Authors

Contributions

A.I.K. and C.S. grew the PZT films. A.I.K., K.C., B.W. and S.D. performed the time-dependence measurements. A.I.K., L.Y., C.S. and S.R.B. performed the structural and electrical characterization of the thin films. A.I.K. and S.S. conceived and designed the experiment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sayeef Salahuddin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3198 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Chatterjee, K., Wang, B. et al. Negative capacitance in a ferroelectric capacitor. Nature Mater 14, 182–186 (2015). https://doi.org/10.1038/nmat4148

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing