Subjects

Abstract

Spins in solids are cornerstone elements of quantum spintronics1. Leading contenders such as defects in diamond2,3,4,5 or individual phosphorus dopants in silicon6 have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems5: it has a large bandgap with deep defects7,8,9 and benefits from mature fabrication techniques10,11,12. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Hybrid solid-state qubits: The powerful role of electron spins. Annu. Rev. Condens. Matter Phys. 2, 189–212 (2011).

  2. 2.

    , , , & Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

  3. 3.

    et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

  4. 4.

    et al. Readout and control of a single nuclear spin with a meta-stable electron spin ancilla. Nature Nanotech. 8, 487–492 (2013).

  5. 5.

    et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

  6. 6.

    et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

  7. 7.

    et al. Defects Microelectronic Materials and Devices 615–669 (CRC Press, 2008).

  8. 8.

    et al. The silicon vacancy in SiC. Physica B 404, 4354–4358 (2009).

  9. 9.

    , , , & Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  10. 10.

    , , & A nitrogen-related deep level defect in ion implanted 4H-SiC pn junctions—A spin dependent recombination study. Appl. Phys. Lett. 100, 112113–112114 (2012).

  11. 11.

    , , & Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 31, 50805–50818 (2013).

  12. 12.

    , , & Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express 19, 11084–11089 (2011).

  13. 13.

    Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 83, 2–4 (2006).

  14. 14.

    , , & Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

  15. 15.

    et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

  16. 16.

    et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

  17. 17.

    et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

  18. 18.

    et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

  19. 19.

    et al. Monocrystalline silicon carbide nanoelectromechanical systems. Appl. Phys. Lett. 78, 162–164 (2001).

  20. 20.

    , , & Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 87601 (2014).

  21. 21.

    et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

  22. 22.

    et al. Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3v symmetry in n-type 4H-SiC. Phys. Rev. B 66, 235202 (2002).

  23. 23.

    et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nature Phys. 10, 157–162 (2014).

  24. 24.

    et al. Excitation and recombination dynamics of vacancy-related spin centers in silicon carbide. J. Appl. Phys. 115, 133508 (2014).

  25. 25.

    et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

  26. 26.

    & Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

  27. 27.

    et al. Electron spin decoherence in silicon carbide nuclear spin bath. Preprint at (2014)

  28. 28.

    , , , & Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).

  29. 29.

    et al. High-resolution Raman and luminescence spectroscopy of isotope-pure 28Si12C, natural and 13C-enriched 4H-SiC. Mater. Sci. Forum 778–780, 471–474 (2014).

  30. 30.

    , , , & Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

  31. 31.

    et al. Development of large diameter high-purity semi-insulating 4H-SiC wafers for microwave devices. Mater. Sci. Forum 457–460, 35–40 (2004).

  32. 32.

    , , , & Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys. Rev. B 75, 155204 (2007).

  33. 33.

    , , , & Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

  34. 34.

    , , & Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 79, 2761–2763 (2001).

  35. 35.

    et al. Characterization of 4H-SiC epilayers grown at a high deposition rate. 353–356, 131–134 (2001).

  36. 36.

    et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nature Mater. (2014) 10.1038/nmat4144

  37. 37.

    et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

Download references

Acknowledgements

We acknowledge support by the EU via SQUTEC, SIQS and QINVC; DARPA via QuASAR; DFG via SPP 1601 and Forschergruppe FOR1493 and the Max Planck Society. A.G. acknowledges support from the Lendület programme of the Hungarian Academy of Sciences, and Hungarian OTKA grant nos K101819 and K106114. Support from the Knut & Alice Wallenberg Foundation (N.T.S., A.G. and E.J.), Linköping Linnaeus Initiative for Novel Functionalized Materials (N.T.S.), and the Ministry of Education, Science, Sports and Culture in Japan, Grant-in-Aid for Scientific Research (B) 26286047 (T.O.) is acknowledged. N.Z. acknowledges NKBRP (973 Program) 2014CB848700 and NSFC No. 11121403. We thank R. Kolesov, R. Stöhr, P. Hemmer, N. Mizuochi and A. Güth for fruitful discussions and experimental aid.

Author information

Affiliations

  1. 3rd Institute of Physics and Research Center SCOPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

    • Matthias Widmann
    • , Sang-Yun Lee
    • , Torsten Rendler
    • , Helmut Fedder
    • , Seoyoung Paik
    • , Sen Yang
    • , Andrej Denisenko
    • , Mohammad Jamali
    • , S. Ali Momenzadeh
    • , Ilja Gerhardt
    •  & Jörg Wrachtrup
  2. Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden

    • Nguyen Tien Son
    • , Ian Booker
    •  & Erik Janzén
  3. Beijing Computational Science Research Center, Beijing 100084, China

    • Li-Ping Yang
    •  & Nan Zhao
  4. Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan

    • Takeshi Ohshima
  5. Wigner Research Centre for Physics, Hungarian Academy of Sciences, PO Box 49, H-1525, Budapest, Hungary

    • Adam Gali
  6. Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111, Budapest, Hungary

    • Adam Gali

Authors

  1. Search for Matthias Widmann in:

  2. Search for Sang-Yun Lee in:

  3. Search for Torsten Rendler in:

  4. Search for Nguyen Tien Son in:

  5. Search for Helmut Fedder in:

  6. Search for Seoyoung Paik in:

  7. Search for Li-Ping Yang in:

  8. Search for Nan Zhao in:

  9. Search for Sen Yang in:

  10. Search for Ian Booker in:

  11. Search for Andrej Denisenko in:

  12. Search for Mohammad Jamali in:

  13. Search for S. Ali Momenzadeh in:

  14. Search for Ilja Gerhardt in:

  15. Search for Takeshi Ohshima in:

  16. Search for Adam Gali in:

  17. Search for Erik Janzén in:

  18. Search for Jörg Wrachtrup in:

Contributions

M.W., S-Y.L., N.T.S., H.F., S.P. and J.W. conceived and designed the experiment; M.W., S-Y.L., T.R. and S.P. performed the experiment; M.W., S-Y.L. and T.R. analysed the data; N.T.S., I.B., T.O. and E.J. prepared materials and contributed to electron irradiation; M.W., S-Y.L., N.T.S., S.Y., I.B., A.D., M.J., S.A.M. and I.G. contributed to the fabrication of SILs; L-P.Y., N.Z. and A.G. provided theoretical support; M.W., S-Y.L., T.R., N.T.S., H.F., S.P., L-P.Y., N.Z., A.G., E.J. and J.W. discussed and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Sang-Yun Lee.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4145

Further reading