Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent control of single spins in silicon carbide at room temperature

Subjects

Abstract

Spins in solids are cornerstone elements of quantum spintronics1. Leading contenders such as defects in diamond2,3,4,5 or individual phosphorus dopants in silicon6 have shown spectacular progress, but either lack established nanotechnology or an efficient spin/photon interface. Silicon carbide (SiC) combines the strength of both systems5: it has a large bandgap with deep defects7,8,9 and benefits from mature fabrication techniques10,11,12. Here, we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence times under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Observation of single silicon vacancy defects in 4H–SiC.
Figure 2: Optical properties of the single TV2 centres in 4H–SiC.
Figure 3: Optically detected electron spin resonance of a single TV2 centre at room temperature.
Figure 4: Room-temperature coherent spin manipulation of a single TV2 centre in 4H–SiC.

References

  1. 1

    Morton, J. J. L. & Lovett, B. W. Hybrid solid-state qubits: The powerful role of electron spins. Annu. Rev. Condens. Matter Phys. 2, 189–212 (2011).

    Article  Google Scholar 

  2. 2

    Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    CAS  Google Scholar 

  4. 4

    Lee, S-Y. et al. Readout and control of a single nuclear spin with a meta-stable electron spin ancilla. Nature Nanotech. 8, 487–492 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Janzén, E. et al. Defects Microelectronic Materials and Devices 615–669 (CRC Press, 2008).

    Google Scholar 

  8. 8

    Janzén, E. et al. The silicon vacancy in SiC. Physica B 404, 4354–4358 (2009).

    Article  Google Scholar 

  9. 9

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Aichinger, T., Lenahan, P. M., Tuttle, B. R. & Peters, D. A nitrogen-related deep level defect in ion implanted 4H-SiC pn junctions—A spin dependent recombination study. Appl. Phys. Lett. 100, 112113–112114 (2012).

    Article  Google Scholar 

  11. 11

    Maboudian, R., Carraro, C., Senesky, D. G. & Roper, C. S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 31, 50805–50818 (2013).

    Article  Google Scholar 

  12. 12

    Song, B-S., Yamada, S., Asano, T. & Noda, S. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express 19, 11084–11089 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Matsunami, H. Current SiC technology for power electronic devices beyond Si. Microelectron. Eng. 83, 2–4 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  Google Scholar 

  15. 15

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Baranov, P. G. et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  Google Scholar 

  17. 17

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

    Article  Google Scholar 

  18. 18

    Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

    Article  Google Scholar 

  19. 19

    Yang, Y. T. et al. Monocrystalline silicon carbide nanoelectromechanical systems. Appl. Phys. Lett. 78, 162–164 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 87601 (2014).

    Article  Google Scholar 

  21. 21

    Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Mizuochi, N. et al. Continuous-wave and pulsed EPR study of the negatively charged silicon vacancy with S = 3/2 and C3v symmetry in n-type 4H-SiC. Phys. Rev. B 66, 235202 (2002).

    Article  Google Scholar 

  23. 23

    Kraus, H. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nature Phys. 10, 157–162 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Hain, T. C. et al. Excitation and recombination dynamics of vacancy-related spin centers in silicon carbide. J. Appl. Phys. 115, 133508 (2014).

    Article  Google Scholar 

  25. 25

    Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    CAS  Article  Google Scholar 

  26. 26

    De Sousa, R. & Das Sarma, S. Theory of nuclear-induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots. Phys. Rev. B 68, 115322 (2003).

    Article  Google Scholar 

  27. 27

    Yang, L-P. et al. Electron spin decoherence in silicon carbide nuclear spin bath. Preprint at http://arxiv.org/abs/1409.4646 (2014)

  28. 28

    Witzel, W. M., Carroll, M. S., Morello, A., Cywiński, Ł & Das Sarma, S. Electron spin decoherence in isotope-enriched silicon. Phys. Rev. Lett. 105, 187602 (2010).

    Article  Google Scholar 

  29. 29

    Ivanov, I. G. et al. High-resolution Raman and luminescence spectroscopy of isotope-pure 28Si12C, natural and 13C-enriched 4H-SiC. Mater. Sci. Forum 778–780, 471–474 (2014).

    Article  Google Scholar 

  30. 30

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Jenny, J. R. et al. Development of large diameter high-purity semi-insulating 4H-SiC wafers for microwave devices. Mater. Sci. Forum 457–460, 35–40 (2004).

    Article  Google Scholar 

  32. 32

    Son, N. T., Carlsson, P., ul Hassan, J., Magnusson, B. & Janzén, E. Defects and carrier compensation in semi-insulating 4H-SiC substrates. Phys. Rev. B 75, 155204 (2007).

    Article  Google Scholar 

  33. 33

    De Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Kimoto, T., Nakazawa, S., Hashimoto, K. & Matsunami, H. Reduction of doping and trap concentrations in 4H-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 79, 2761–2763 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Tsuchida, H. et al. Characterization of 4H-SiC epilayers grown at a high deposition rate. 353–356, 131–134 (2001).

  36. 36

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nature Mater. (2014) 10.1038/nmat4144

  37. 37

    Riedel, D. et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the EU via SQUTEC, SIQS and QINVC; DARPA via QuASAR; DFG via SPP 1601 and Forschergruppe FOR1493 and the Max Planck Society. A.G. acknowledges support from the Lendület programme of the Hungarian Academy of Sciences, and Hungarian OTKA grant nos K101819 and K106114. Support from the Knut & Alice Wallenberg Foundation (N.T.S., A.G. and E.J.), Linköping Linnaeus Initiative for Novel Functionalized Materials (N.T.S.), and the Ministry of Education, Science, Sports and Culture in Japan, Grant-in-Aid for Scientific Research (B) 26286047 (T.O.) is acknowledged. N.Z. acknowledges NKBRP (973 Program) 2014CB848700 and NSFC No. 11121403. We thank R. Kolesov, R. Stöhr, P. Hemmer, N. Mizuochi and A. Güth for fruitful discussions and experimental aid.

Author information

Affiliations

Authors

Contributions

M.W., S-Y.L., N.T.S., H.F., S.P. and J.W. conceived and designed the experiment; M.W., S-Y.L., T.R. and S.P. performed the experiment; M.W., S-Y.L. and T.R. analysed the data; N.T.S., I.B., T.O. and E.J. prepared materials and contributed to electron irradiation; M.W., S-Y.L., N.T.S., S.Y., I.B., A.D., M.J., S.A.M. and I.G. contributed to the fabrication of SILs; L-P.Y., N.Z. and A.G. provided theoretical support; M.W., S-Y.L., T.R., N.T.S., H.F., S.P., L-P.Y., N.Z., A.G., E.J. and J.W. discussed and wrote the paper.

Corresponding author

Correspondence to Sang-Yun Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1461 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Widmann, M., Lee, SY., Rendler, T. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater 14, 164–168 (2015). https://doi.org/10.1038/nmat4145

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing