Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isolated electron spins in silicon carbide with millisecond coherence times



The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries1. Nonetheless, because certain SiC defects have electronic states with sharp optical and spin transitions, they are increasingly recognized as a platform for quantum information and nanoscale sensing2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Here, we show that individual electron spins in high-purity monocrystalline 4H–SiC can be isolated and coherently controlled. Bound to neutral divacancy defects2,3, these states exhibit exceptionally long ensemble Hahn-echo spin coherence times, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route towards wafer-scale quantum technologies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of neutral divacancies in SiC.
Figure 2: Coherent control of single divacancy spins.
Figure 3: Spin coherence of SiC divacancies.


  1. Saddow, S. E. & Agarwal, A. K. Advances in Silicon Carbide Processing and Applications (Artech House, 2004).

    Google Scholar 

  2. Baranov, P. G. et al. EPR identification of the triplet ground state and photoinduced population inversion for a Si–C divacancy in silicon carbide. JETP Lett. 82, 441–443 (2005).

    Article  CAS  Google Scholar 

  3. Son, N. T. et al. Divacancy in 4H–SiC. Phys. Rev. Lett. 96, 055501 (2006).

    Article  CAS  Google Scholar 

  4. Tol, J. v. et al. High-field phenomena of qubits. Appl. Magn. Reson. 36, 259–268 (2009).

    Article  CAS  Google Scholar 

  5. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  CAS  Google Scholar 

  6. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  7. Baranov, P. G., Bundakova, A. P. & Soltamov, A. A. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

    Article  Google Scholar 

  8. Gali, A. Time-dependent density functional study on the excitation spectrum of point defects in semiconductors. Phys. Status Solidi B 248, 1337–1346 (2011).

    Article  CAS  Google Scholar 

  9. Riedel, R. et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

    Article  CAS  Google Scholar 

  10. Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H– and 6H–SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  Google Scholar 

  11. Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

    Article  Google Scholar 

  12. Klimov, P. V., Falk, A. L., Buckley, B. B. & Awschalom, D. D. Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 087601 (2014).

    Article  Google Scholar 

  13. Falk, A. L. et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

    Article  Google Scholar 

  14. Castelletto, S. et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

    Article  CAS  Google Scholar 

  15. Kraus, H. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nature Phys. 10, 157–162 (2013).

    Article  Google Scholar 

  16. Calusine, G., Politi, A. & Awschalom, D. D. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 011123 (2014).

    Article  Google Scholar 

  17. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  CAS  Google Scholar 

  18. Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    Article  CAS  Google Scholar 

  19. Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nm) cubed sample volume. Science 339, 561–563 (2013).

    Article  CAS  Google Scholar 

  20. Toyli, D. M., Casas, C. F. d. l., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    Article  CAS  Google Scholar 

  21. Kucsko, G. et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

    Article  CAS  Google Scholar 

  22. Wrachtrup, J., Borcyzskowski, C. v., Bernard, J., Orrit, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    Article  CAS  Google Scholar 

  23. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  24. Carlos, W. E., Glaser, E. R. & Shanabrook, B. V. Optical and magnetic resonance signatures of deep levels in semi-insulating 4H–SiC. Physica B 340–342, 151–155 (2003).

    Article  Google Scholar 

  25. Magnusson, B. & Janzen, E. Optical characterization of deep level defects in SiC. Mater. Sci. Forum 483–485, 341–346 (2005).

    Article  Google Scholar 

  26. Carlos, W. E., Graces, N. Y., Glaser, E. R. & Fanton, M. A. Annealing of multivacancy defects in 4H–SiC. Phys. Rev. B 74, 235201 (2006).

    Article  Google Scholar 

  27. Hassan, J., Bergman, J. P., Henry, A. & Janzén, E. On-axis homoepitaxial growth on Si-face 4H–SiC substrates. J. Cryst. Growth 310, 4424–4429 (2008).

    Article  CAS  Google Scholar 

  28. Oort, E. v. & Glasbeek, M. Optically detected low field electron spin echo envelope modulations of fluorescent N–V centers in diamond. Chem. Phys. 143, 131–140 (1990).

    Article  Google Scholar 

  29. Stanwix, P. L. et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010).

    Article  Google Scholar 

  30. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. (2014)10.1038/nmat4145

Download references


The authors thank Á. Gali, B. B. Buckley, W. F. Koehl, F. J. Heremans and G. Calusine for helpful discussions. The authors also thank S. Chemerisov and A.B. Norstel for assistance preparing preliminary samples and gratefully acknowledge support from the NSF, AFOSR MURI, the Center for Nanoscale Materials (CNM 39211), the Knut & Alice Wallenberg Foundation, the Linköping Linnaeus Initiative for Novel Functionalized Materials, the Swedish Government Strategic Research Area Grant in Materials Science (Advanced Functional Materials), and the Ministry of Education, Science, Sports and Culture of Japan, Grant-in-Aid (B) 26286047.

Author information

Authors and Affiliations



J.U.H., E.J. and N.T.S. contributed to design, growth and processing of the SiC samples. T.O. and N.T.S. contributed to electron irradiation and annealing experiments. D.J.C., A.L.F., P.A. and P.V.K. performed the optical experiments. All the authors contributed to analysis of the data, discussions and the production of the manuscript.

Corresponding author

Correspondence to David D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1349 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christle, D., Falk, A., Andrich, P. et al. Isolated electron spins in silicon carbide with millisecond coherence times. Nature Mater 14, 160–163 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing