Letter | Published:

Isolated electron spins in silicon carbide with millisecond coherence times

Nature Materials volume 14, pages 160163 (2015) | Download Citation

Subjects

Abstract

The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries1. Nonetheless, because certain SiC defects have electronic states with sharp optical and spin transitions, they are increasingly recognized as a platform for quantum information and nanoscale sensing2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Here, we show that individual electron spins in high-purity monocrystalline 4H–SiC can be isolated and coherently controlled. Bound to neutral divacancy defects2,3, these states exhibit exceptionally long ensemble Hahn-echo spin coherence times, exceeding 1 ms. Coherent control of single spins in a material amenable to advanced growth and microfabrication techniques is an exciting route towards wafer-scale quantum technologies.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Advances in Silicon Carbide Processing and Applications (Artech House, 2004).

  2. 2.

    et al. EPR identification of the triplet ground state and photoinduced population inversion for a Si–C divacancy in silicon carbide. JETP Lett. 82, 441–443 (2005).

  3. 3.

    et al. Divacancy in 4H–SiC. Phys. Rev. Lett. 96, 055501 (2006).

  4. 4.

    et al. High-field phenomena of qubits. Appl. Magn. Reson. 36, 259–268 (2009).

  5. 5.

    et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

  6. 6.

    , , , & Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  7. 7.

    , & Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83, 125203 (2011).

  8. 8.

    Time-dependent density functional study on the excitation spectrum of point defects in semiconductors. Phys. Status Solidi B 248, 1337–1346 (2011).

  9. 9.

    et al. Resonant addressing and manipulation of silicon vacancy qubits in silicon carbide. Phys. Rev. Lett. 109, 226402 (2012).

  10. 10.

    , , & Room temperature coherent spin alignment of silicon vacancies in 4H– and 6H–SiC. Phys. Rev. Lett. 108, 226402 (2012).

  11. 11.

    et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

  12. 12.

    , , & Electrically driven spin resonance in silicon carbide color centers. Phys. Rev. Lett. 112, 087601 (2014).

  13. 13.

    et al. Electrically and mechanically tunable electron spins in silicon carbide color centers. Phys. Rev. Lett. 112, 187601 (2014).

  14. 14.

    et al. A silicon carbide room-temperature single-photon source. Nature Mater. 13, 151–156 (2014).

  15. 15.

    et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nature Phys. 10, 157–162 (2013).

  16. 16.

    , & Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 011123 (2014).

  17. 17.

    et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

  18. 18.

    et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

  19. 19.

    et al. Nuclear magnetic resonance spectroscopy on a (5-nm) cubed sample volume. Science 339, 561–563 (2013).

  20. 20.

    , , , & Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

  21. 21.

    et al. Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013).

  22. 22.

    , , , & Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

  23. 23.

    et al. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

  24. 24.

    , & Optical and magnetic resonance signatures of deep levels in semi-insulating 4H–SiC. Physica B 340–342, 151–155 (2003).

  25. 25.

    & Optical characterization of deep level defects in SiC. Mater. Sci. Forum 483–485, 341–346 (2005).

  26. 26.

    , , & Annealing of multivacancy defects in 4H–SiC. Phys. Rev. B 74, 235201 (2006).

  27. 27.

    , , & On-axis homoepitaxial growth on Si-face 4H–SiC substrates. J. Cryst. Growth 310, 4424–4429 (2008).

  28. 28.

    & Optically detected low field electron spin echo envelope modulations of fluorescent N–V centers in diamond. Chem. Phys. 143, 131–140 (1990).

  29. 29.

    et al. Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys. Rev. B 82, 201201 (2010).

  30. 30.

    et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. (2014)10.1038/nmat4145

Download references

Acknowledgements

The authors thank Á. Gali, B. B. Buckley, W. F. Koehl, F. J. Heremans and G. Calusine for helpful discussions. The authors also thank S. Chemerisov and A.B. Norstel for assistance preparing preliminary samples and gratefully acknowledge support from the NSF, AFOSR MURI, the Center for Nanoscale Materials (CNM 39211), the Knut & Alice Wallenberg Foundation, the Linköping Linnaeus Initiative for Novel Functionalized Materials, the Swedish Government Strategic Research Area Grant in Materials Science (Advanced Functional Materials), and the Ministry of Education, Science, Sports and Culture of Japan, Grant-in-Aid (B) 26286047.

Author information

Affiliations

  1. Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA

    • David J. Christle
    • , Abram L. Falk
    • , Paolo Andrich
    • , Paul V. Klimov
    •  & David D. Awschalom
  2. Department of Physics, University of California, Santa Barbara, California 93106, USA

    • David J. Christle
    • , Paolo Andrich
    • , Paul V. Klimov
    •  & David D. Awschalom
  3. Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden

    • Jawad Ul Hassan
    • , Nguyen T. Son
    •  & Erik Janzén
  4. Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan

    • Takeshi Ohshima

Authors

  1. Search for David J. Christle in:

  2. Search for Abram L. Falk in:

  3. Search for Paolo Andrich in:

  4. Search for Paul V. Klimov in:

  5. Search for Jawad Ul Hassan in:

  6. Search for Nguyen T. Son in:

  7. Search for Erik Janzén in:

  8. Search for Takeshi Ohshima in:

  9. Search for David D. Awschalom in:

Contributions

J.U.H., E.J. and N.T.S. contributed to design, growth and processing of the SiC samples. T.O. and N.T.S. contributed to electron irradiation and annealing experiments. D.J.C., A.L.F., P.A. and P.V.K. performed the optical experiments. All the authors contributed to analysis of the data, discussions and the production of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David D. Awschalom.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4144

Further reading