Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Orbital-driven nematicity in FeSe

Abstract

A fundamental and unconventional characteristic of superconductivity in iron-based materials is that it occurs in the vicinity of two other instabilities. In addition to a tendency towards magnetic order, these Fe-based systems have a propensity for nematic ordering: a lowering of the rotational symmetry while time-reversal invariance is preserved. Setting the stage for superconductivity, it is heavily debated whether the nematic symmetry breaking is driven by lattice, orbital or spin degrees of freedom. Here, we report a very clear splitting of NMR resonance lines in FeSe at Tnem = 91 K, far above the superconducting Tc of 9.3 K. The splitting occurs for magnetic fields perpendicular to the Fe planes and has the temperature dependence of a Landau-type order parameter. Spin–lattice relaxation rates are not affected at Tnem, which unequivocally establishes orbital degrees of freedom as driving the nematic order. We demonstrate that superconductivity competes with the emerging nematicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic crystallographic structure of FeSe.
Figure 2: 77Se NMR spectra for the FeSe single crystal.
Figure 3: Emergence of orbital-driven nematic state in FeSe.
Figure 4: Top view of the FOO in FeSe with the two different domains that are present in a twinned crystal.

Similar content being viewed by others

References

  1. Yi, M. et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878–6883 (2011).

    Article  CAS  Google Scholar 

  2. Chu, J-H., Kuo, H-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  CAS  Google Scholar 

  3. Kasahara, S. et al. Contrasts in electron correlations and inelastic scattering between LiFeP and LiFeAs revealed by charge transport. Phys. Rev. B 85, 060503 (2012).

    Article  Google Scholar 

  4. Böhmer, A. E. et al. Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements. Phys. Rev. Lett. 112, 047001 (2014).

    Article  Google Scholar 

  5. McQueen, T. M. et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 103, 057002 (2009).

    Article  CAS  Google Scholar 

  6. Margadonna, S. et al. Crystal structure of the new FeSe1−x superconductor. Chem. Commun. 5607–5609 (2008).

  7. Fu, M. et al. NMR search for the spin nematic state in a LaFeAsO single crystal. Phys. Rev. Lett. 109, 247001 (2012).

    Article  CAS  Google Scholar 

  8. Fang, C., Yao, H., Tsai, W-F., Hu, J. & Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B 77, 224509 (2008).

    Article  Google Scholar 

  9. Xu, C. & Sachdev, S. The new iron age. Nature Phys. 4, 898–900 (2008).

    Article  CAS  Google Scholar 

  10. Fradkin, E. & Kivelson, S. A. Electron nematic phases proliferate. Science 327, 155–156 (2010).

    Article  CAS  Google Scholar 

  11. Krüger, F., Kumar, S., Zaanen, J. & van den Brink, J. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    Article  Google Scholar 

  12. Lv, W., Wu, J. & Phillips, P. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 80, 224506 (2009).

    Article  Google Scholar 

  13. Lee, C-C., Yin, W-G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Article  Google Scholar 

  14. Daghofer, M. et al. Orbital-weight redistribution triggered by spin order in the pnictides. Phys. Rev. B 81, 180514 (2010).

    Article  Google Scholar 

  15. Chen, C-C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010).

    Article  Google Scholar 

  16. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nature Phys. 10, 97–104 (2014).

    Article  CAS  Google Scholar 

  17. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  18. Hsu, F-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  19. Wang, Q-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  20. Xiang, Y-Y., Wang, F., Wang, D., Wang, Q-H. & Lee, D-H. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys. Rev. B 86, 134508 (2012).

    Article  Google Scholar 

  21. Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nature Mater. 12, 634–640 (2013).

    Article  CAS  Google Scholar 

  22. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  23. Zhang, W-H. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 31, 017401 (2014).

    Article  Google Scholar 

  24. Ge, J-F. et al. Superconductivity in single-layer films of FeSe with a transition temperature above 100 K. Preprint at http://arxiv.org/abs/1406.3435 (2014).

  25. Böhmer, A. E. et al. Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe. Phys. Rev. B 87, 180505 (2013).

    Article  Google Scholar 

  26. Imai, T., Ahilan, K., Ning, F. L., McQueen, T. M. & Cava, R. J. Why does undoped FeSe become a high-Tc superconductor under pressure? Phys. Rev. Lett. 102, 177005 (2009).

    Article  CAS  Google Scholar 

  27. Medvedev, S. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Mater. 8, 630–633 (2009).

    Article  CAS  Google Scholar 

  28. Korshunov, M. M., Eremin, I., Efremov, D. V., Maslov, D. L. & Chubukov, A. V. Nonanalytic spin susceptibility of a fermi liquid: The case of Fe-based pnictides. Phys. Rev. Lett. 102, 236403 (2009).

    Article  CAS  Google Scholar 

  29. Song, C-L. et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science 332, 1410–1413 (2011).

    Article  CAS  Google Scholar 

  30. Chareev, D. et al. Single crystal growth and characterization of tetragonal FeSe1−x superconductors. Cryst. Eng. Commun. 15, 1989–1993 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Prando and H-J. Grafe for discussion. This work has been supported by the Deutsche Forschungsgemeinschaft (Germany) through DFG Research Grants BA 4927/1-1 and the Priority Program SPP 1458. Financial support through the DFG Research Training Group GRK 1621 is gratefully acknowledged. The work at POSTECH was supported by the National Research Foundation (NRF) through the Mid-Career Researcher Program (No. 2012-013838), SRC Center for Topological Matter (No. 2011-0030046), and the Max Planck POSTECH/KOREA Research Initiative Program (No. 2011-0031558), and also by the Institute of Basic Science (IBS) through the Center for Artificial Low Dimensional Electronic Systems.

Author information

Authors and Affiliations

Authors

Contributions

S-H.B. performed the main NMR measurements, analysed data, and participated in writing of the manuscript; J.M.O. and J.S.K. synthesized the sample; D.V.E. and J.v.d.B. provided theoretical support and participated in writing of the manuscript; B.B. supervised and guided the study and participated in the writing of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to S-H. Baek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, SH., Efremov, D., Ok, J. et al. Orbital-driven nematicity in FeSe. Nature Mater 14, 210–214 (2015). https://doi.org/10.1038/nmat4138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing