Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of voltage decay in high-capacity layered oxide electrodes

Subjects

Abstract

Although Li-rich layered oxides (Li1+xNiyCozMn1−xyzO2 > 250 mAh g−1) are attractive electrode materials providing energy densities more than 15% higher than today’s commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1−yTiyO3 phases with capacities of ~240 mAh g−1 exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge–discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1−ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural and electrochemical aspects of Li2Ru0.75Ti0.25O3.
Figure 2: Cycling behaviour of Li2Ru1−yMyO3 (M = Ru/Sn/Ti) in the view towards voltage decay.
Figure 3: Li-driven structural changes of Li2Ru0.75M0.25O3 (M = Sn/Ti).
Figure 4: XPS of Li2Ru0.75Ti0.25O3.
Figure 5: HAADF-STEM images of Li2Ru0.75Ti0.25O3 electrodes.
Figure 6: Comparison of HAADF-STEM images of Li2Ru0.75M0.25O3 (M = Sn/ Ti) on long cycling.

Similar content being viewed by others

References

  1. Whittingham, M. S. Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008).

    CAS  Google Scholar 

  2. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  3. Palacin, M. R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 38, 2565–2575 (2009).

    Article  CAS  Google Scholar 

  4. Armand, M. & Tarascon, J-M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  5. Prosini, P. P. Iron Phosphate Materials as Cathodes for Lithium Batteries (Springer, 2011).

    Book  Google Scholar 

  6. Rousse, G. & Tarascon, J-M. Sulfate-based polyanionic compounds for Li-ion batteries: Synthesis, crystal chemistry, and electrochemistry aspects. Chem. Mater. 26, 294–406 (2014).

    Google Scholar 

  7. He, P., Yu, H., Li, D. & Zhou, H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. 22, 3680–3695 (2012).

    Article  CAS  Google Scholar 

  8. Ohzuku, T. & Makimura, Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642–643 (2001).

    Article  Google Scholar 

  9. Koyama, Y., Tanaka, I., Adachi, H., Makimura, Y. & Ohzuku, T. Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 119–121, 644–648 (2003).

    Article  Google Scholar 

  10. Thackeray, M. M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

    Article  CAS  Google Scholar 

  11. Zhou, F., Zhao, X., van Bommel, A., Xia, X. & Dahn, J. R. Comparison of Li[Li1/9Ni1/3Mn5/9]O2, Li[Li1/5Ni1/5Mn3/5]O2, LiNi0.5Mn1.5O4, and LiNi2/3Mn1/3O2 as high voltage positive electrode materials. J. Electrochem. Soc. 158, A187–A191 (2011).

    Article  CAS  Google Scholar 

  12. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  13. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  CAS  Google Scholar 

  14. Bettge, M. et al. Voltage fade of layered oxides: Its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046–A2055 (2013).

    Article  CAS  Google Scholar 

  15. Gallagher, K. G. et al. Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96–98 (2013).

    Article  CAS  Google Scholar 

  16. Croy, J. R. et al. Examining hysteresis in composite xLi2MnO3 (1 − x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013).

    Article  CAS  Google Scholar 

  17. Gu, M. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2012).

    Article  Google Scholar 

  18. Mohanty, D. et al. Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A 1, 6249–6261 (2013).

    Article  CAS  Google Scholar 

  19. Ito, A. et al. Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources 196, 4785–4790 (2011).

    Article  CAS  Google Scholar 

  20. Zheng, J. et al. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013).

    Article  CAS  Google Scholar 

  21. Croy, J. R. et al. Countering the voltage decay in high capacity xLi2MnO3 (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) for Li+-ion batteries. J. Electrochem. Soc. 159, A781–A790 (2012).

    Article  CAS  Google Scholar 

  22. Hong, J. et al. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a rechargeable battery. J. Mater. Chem. 20, 10179–10186 (2010).

    Article  CAS  Google Scholar 

  23. Xu, B., Fell, C-R., Chi, M. & Meng, Y-S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011).

    Article  CAS  Google Scholar 

  24. Sathiya, M. et al. High performance Li2Ru1−yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding. Chem. Mater. 25, 1121–1131 (2013).

    CAS  Google Scholar 

  25. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article  CAS  Google Scholar 

  26. Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).

    Article  Google Scholar 

  27. Yu, H. & Zhou, H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013).

    Article  CAS  Google Scholar 

  28. Kang, S. H. et al. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3.0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J. Mater. Chem. 17, 2069–2077 (2007).

    Article  CAS  Google Scholar 

  29. Manju, U., Awana, V. P. S., Kishan, H. & Sarma, D. D. X-ray photoelectron spectroscopy of superconducting RuSr2Eu1.5Ce0.5Cu2O10 and nonsuperconducting RuSr2EuCeCu2O10 . Phys. Rev. B 74, 245106 (2006).

    Article  Google Scholar 

  30. Dupin, J-C., Gonbeau, D., Vinatier, P. & Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000).

    Article  CAS  Google Scholar 

  31. Atuchin, V. V., Kesler, V. G., Pervukhina, N. V. & Zhang, Z. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron Spectrosc. Relat. Phenom. 152, 18–24 (2006).

    Article  CAS  Google Scholar 

  32. Arillo, M. A. et al. Surface characterisation of spinels with Ti(IV) distributed in tetrahedral and octahedral sites. J. Alloys Compd. 317–318, 160–163 (2001).

    Article  Google Scholar 

  33. Kang, K. et al. Synthesis and electrochemical properties of layered Li0.9Ni0.45Ti0.55O2 . Chem. Mater. 15, 4503–4507 (2003).

    Article  CAS  Google Scholar 

  34. Morra, E., Giamello, E. & Chiesa, M. Probing the redox chemistry of titanium silicate-1: Formation of tetrahedral Ti3+ centers by reaction with triethyl aluminium. Chemistry 20, 7381–7388 (2014).

    Article  CAS  Google Scholar 

  35. Lopez, M. C. et al. Tunable Ti4+/Ti3+ redox potential in the presence of iron and calcium in NASICON-type related phosphates as electrodes for lithium batteries. Chem. Mater. 25, 4025–4035 (2013).

    CAS  Google Scholar 

  36. Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode material. J. Electrochem. Soc. 150, A1044–A1051 (2003).

    Article  CAS  Google Scholar 

  37. Bak, S-M. et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 25, 337–351 (2013).

    Article  CAS  Google Scholar 

  38. Morcrette, M. et al. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nature Mater. 2, 755–761 (2003).

    Article  CAS  Google Scholar 

  39. Qian, J., Qiao, D., Ai, X., Cao, Y. & Yang, H. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 48, 8931–8933 (2012).

    Article  CAS  Google Scholar 

  40. Poizot, P. et al. Evidence of an electrochemically assisted ion exchange reaction in Cu2.33V4O11 electrode material vs. Li. Electrochem. Solid-State Lett. 8, A184–A187 (2005).

    Article  CAS  Google Scholar 

  41. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  42. Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel phase transition in LixMnO2 . Electrochem. Solid-State Lett. 4, A78–A81 (2001).

    Article  CAS  Google Scholar 

  43. Yabuuchi, N. et al. 224th ECS Meeting (The Electrochemical Society, 2013).

    Google Scholar 

  44. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  45. Rodriguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge both ALISTORE-ERI and RS2E institutions for fully supporting this work. G.V.T. acknowledges the European Research Council, ERC grant No. 246791–COUNTATOMS. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483-ESTEEM2 (Integrated Infrastructure Initiative–I3). C.P.L. thanks the CSIR, New Delhi for granting a Senior Research Fellowship. Use of the APS (Advanced Photon Source) at Argonne National Laboratory (ANL) supported by the US Department of Energy under Contract No. DE-AC02-06CH11357 is greatly acknowledged. J. Kurzman is acknowledged for support in editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.Sathiya, K.R., C.P.L. and A.S.P. carried out the synthesis, M.Sathiya, and J-M.T. conducted the electrochemical work and J-M.T. designed the research approach; G.R. analysed the crystal structures and diffraction patterns; A.M.A. and G.V.T. carried out, analysed and exploited the electron diffraction and HAADF-STEM studies; D.F. and D.G. collected and analysed the XPS spectra; M.Saubanère and M.L.D. conducted the DFT calculations and developed the theoretical framework; M.Sathiya, A.M.A. and J-M.T. wrote the manuscript and all authors discussed the experiments and final manuscript.

Corresponding author

Correspondence to J-M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiya, M., Abakumov, A., Foix, D. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nature Mater 14, 230–238 (2015). https://doi.org/10.1038/nmat4137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing