Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Layered memristive and memcapacitive switches for printable electronics


Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages1,2. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems3,4. At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices5. Here, we demonstrate that solution-processed MoOx/MoS2 and WOx/WS2 heterostructures sandwiched between two printed silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 102 to 108 Ω combined with low programming voltages of 0.1–0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (<3 nm) oxide layer. With strong nonlinearity in switching dynamics, different mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution-processed MoOx/MoS2 memristors on a plastic foil.
Figure 2: Resistive and capacitive switching characteristics of MoOx/MoS2 heterostructures.
Figure 3: Layered memristor response to programming pulses.
Figure 4: Resistance state retention and mechanical endurance.

Similar content being viewed by others


  1. Pershin, Y. V. & Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145–227 (2011).

    Article  Google Scholar 

  2. Kuzum, D., Yu, S. & Wong, H-S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 24, 382001 (2013).

    Article  Google Scholar 

  3. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nature Nanotech. 8, 13–24 (2013).

    Article  CAS  Google Scholar 

  4. Ha, S. D. & Ramanathan, S. Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011).

    Article  Google Scholar 

  5. Ryhänen, T., Uusitalo, M., Ikkala, O. & Kärkkäinen, A. Nanotechnologies for Future Mobile Devices (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  6. Di Ventra, M., Pershin, Y. V. & Chua, L. O. Circuit elements with memory: Memristors, memcapacitors and meminductors. Proc. IEEE 97, 1717–1724 (2009).

    Article  CAS  Google Scholar 

  7. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  CAS  Google Scholar 

  8. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article  CAS  Google Scholar 

  9. Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotech. 9, 397–404 (2014).

    Article  CAS  Google Scholar 

  10. Kim, S., Jeong, H. Y., Kim, S. K., Choi, S-Y. & Lee, K. J. Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011).

    Article  CAS  Google Scholar 

  11. Jang, J., Pan, F., Braam, K. & Subramanian, V. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications. Adv. Mater. 24, 3573–3576 (2012).

    Article  CAS  Google Scholar 

  12. Lien, D-H. et al. All-printed paper memory. ACS Nano 8, 7613–7619 (2014).

    Article  CAS  Google Scholar 

  13. Erokhin, V., Berzina, T. & Fontana, M. P. Hybrid electronic device based on polyaniline–polyethyleneoxide junction. J. Appl. Phys. 97, 064501 (2005).

    Article  Google Scholar 

  14. Ji, Y. et al. Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Commun. 4, 2707 (2013).

    Article  Google Scholar 

  15. Frey, G. L., Reynolds, K. J., Friend, R. H., Cohen, H. & Feldman, Y. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes. J. Am. Chem. Soc. 125, 5998–6007 (2003).

    Article  CAS  Google Scholar 

  16. Lin, J. et al. Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers. Appl. Phys. Lett. 103, 063109 (2013).

    Article  Google Scholar 

  17. Nan, H. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8, 5738–5745 (2014).

    Article  CAS  Google Scholar 

  18. Islam, M. R. et al. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale 6, 10033–10039 (2014).

    Article  CAS  Google Scholar 

  19. Galagan, Y. et al. Photonic sintering of inkjet printed current collecting grids for organic solar cell applications. Org. Electron. 14, 38–46 (2013).

    Article  CAS  Google Scholar 

  20. Bessonov, A., Kirikova, M., Haque, S., Gartseev, I. & Bailey, M. J. A. Highly reproducible printable graphite strain gauges for flexible devices. Sens. Actuat. A 206, 75–80 (2014).

    Article  CAS  Google Scholar 

  21. Arita, M., Kaji, H., Fujii, T. & Takahashi, Y. Resistance switching properties of molybdenum oxide films. Thin Solid Films 520, 4762–4767 (2012).

    Article  CAS  Google Scholar 

  22. Chang, T., Jo, S-H. & Lu, W. Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5, 7669–7676 (2011).

    Article  CAS  Google Scholar 

  23. Yang, R. et al. Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation. Nanotechnology 24, 384003 (2013).

    Article  Google Scholar 

  24. Mikheev, E., Hoskins, B. D., Strukov, D. B. & Stemmer, S. Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Commun. 5, 3990 (2014).

    Article  CAS  Google Scholar 

  25. Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  CAS  Google Scholar 

  26. Chen, M. et al. Stable few-layer MoS2 rectifying diodes formed by plasma-assisted doping. Appl. Phys. Lett. 103, 142110 (2013).

    Article  Google Scholar 

  27. Greiner, M. T. & Lu, Z-H. Thin-film metal oxides in organic semiconductor devices: Their electronic structures, work functions and interfaces. NPG Asia Mater. 5, e55 (2013).

    Article  CAS  Google Scholar 

  28. Irfan, I. & Gao, Y. Effects of exposure and air annealing on MoOx thin films. J. Photon. Energy. 2, 021213 (2012).

    Article  Google Scholar 

  29. Nowotny, M. K. et al. Observations of p-type semiconductivity in titanium dioxide at room temperature. Mater. Lett. 64, 928–930 (2010).

    Article  CAS  Google Scholar 

  30. McDonnell, S. et al. Hole contacts on transition metal dichalcogenides: Interface chemistry and band alignments. ACS Nano 8, 6265–6272 (2014).

    Article  CAS  Google Scholar 

  31. Hou, J., Nonnenmann, S. S., Qin, W. & Bonnell, D. A. Size dependence of resistive switching at nanoscale metal-oxide interfaces. Adv. Funct. Mater. 24, 4113–4118 (2014).

    Article  CAS  Google Scholar 

  32. Pipinys, P., Pipiniene, A. & Rimeika, A. Phonon-assisted tunneling in reverse biased Schottky diodes. J. Appl. Phys. 86, 6875–6878 (1999).

    Article  CAS  Google Scholar 

  33. Divigalpitiya, W. M. R., Morrison, S. R. & Frindt, R. F. Thin oriented films of molybdenum disulfide. Thin Solid Films 186, 177–192 (1990).

    Article  CAS  Google Scholar 

Download references


The authors greatly thank J. Kivioja and I. B. Gartseev (Nokia) for fruitful discussions, R. White and S. Malik (Nokia) for help with supplying materials, and the Center ‘Systems for Microscopy and Analysis’ (Technopark ‘Skolkovo’) for performing SEM and XPS analysis. We also acknowledge technical support and valuable comments from D. Yu. Paraschuk, D. M. Itkis, D. A. Semenenko (MSU) and N. M. Surin, S. A. Ponomarenko (ISPM RAS).

Author information

Authors and Affiliations



A.A.B. and M.N.K. discovered the memory effect, formulated the experimental approach, fabricated the samples and performed characterization. D.I.P. and M.A. supported printing experiments, electrical measurements and data analysis. T.R. and M.J.A.B. performed general supervision of the study. A.A.B. prepared the manuscript, with all authors discussing the results and commenting on the manuscript.

Corresponding author

Correspondence to Alexander A. Bessonov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonov, A., Kirikova, M., Petukhov, D. et al. Layered memristive and memcapacitive switches for printable electronics. Nature Mater 14, 199–204 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing