Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+δ


In the high-temperature (Tc) cuprate superconductors, a growing body of evidence suggests that the pseudogap phase1, existing below the pseudogap temperature T, is characterized by some broken electronic symmetries distinct from those associated with superconductivity2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21. In particular, recent scattering experiments have suggested that charge ordering competes with superconductivity18,19,20,21. However, no direct link of an interplay between the two phases has been identified from the important low-energy excitations. Here, we report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with theoretical calculations confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two orders and the complex phase diagram near the pseudogap critical point.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the antinodal electronic states in optimally doped Bi2212.
Figure 2: Simulated temperature dependence of the antinodal spectra with the pseudogap, electron–boson coupling and superconductivity.
Figure 3: Doping dependence of competition between the order parameters for the pseudogap and superconductivity.
Figure 4: Superconductivity–pseudogap phase competition in Bi2212.


  1. Hüfner, S., Hossain, M. A., Damascelli, A. & Sawatzky, G. A. Two gaps make a high-temperature superconductor? Rep. Prog. Phys. 71, 062501 (2008).

    Article  Google Scholar 

  2. Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002).

    Article  Google Scholar 

  3. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004).

    Article  CAS  Google Scholar 

  4. Fauque, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006).

    Article  CAS  Google Scholar 

  5. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  CAS  Google Scholar 

  6. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6.45 . Science 319, 597–600 (2008).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ . Nature 455, 372–375 (2008).

    Article  CAS  Google Scholar 

  8. Ma, J. H. et al. Coexistence of competing orders with two energy gaps in real and momentum space in the high temperature superconductor Bi2Sr2−xLaxCuO6+δ . Phys. Rev. Lett. 101, 207002 (2008).

    Article  Google Scholar 

  9. Mook, H. A., Sidis, Y., Fauqué, B., Balédent, V. & Bourges, P. Observation of magnetic order in a superconducting YBa2Cu3O6.6 single crystal using polarized neutron scattering. Phys. Rev. B 78, 020506 (2008).

    Article  Google Scholar 

  10. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: Evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008).

    Article  Google Scholar 

  11. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010).

    Article  CAS  Google Scholar 

  12. Hashimoto, M. et al. Particle–hole symmetry breaking in the pseudogap state of Bi2201. Nature Phys. 6, 414–418 (2010).

    Article  CAS  Google Scholar 

  13. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  CAS  Google Scholar 

  14. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010).

    Article  CAS  Google Scholar 

  15. He, R. H. et al. From a single-band metal to a high-temperature superconductor via two thermal phase transitions. Science 331, 1579–1583 (2011).

    Article  CAS  Google Scholar 

  16. Shekhter, A. et al. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ . Nature 498, 75–77 (2013).

    Article  CAS  Google Scholar 

  17. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper-oxide superconductors. Nature 375, 561–563 (1995).

    Article  Google Scholar 

  18. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  CAS  Google Scholar 

  19. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  CAS  Google Scholar 

  20. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ . Science 343, 390–392 (2014).

    Article  CAS  Google Scholar 

  21. Da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    Article  CAS  Google Scholar 

  22. Eschrig, M. & Norman, M. R. Neutron resonance: Modeling photoemission and tunneling data in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 3261–3264 (2000).

    Article  CAS  Google Scholar 

  23. Cuk, T. et al. Coupling of the B1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+δ . Phys. Rev. Lett. 93, 117003 (2004).

    Article  CAS  Google Scholar 

  24. Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    Article  CAS  Google Scholar 

  25. Vishik, I. M. et al. Phase competition in trisected superconducting dome. Proc. Natl Acad. Sci. USA 109, 18332–18337 (2012).

    Article  CAS  Google Scholar 

  26. Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000).

    Article  CAS  Google Scholar 

  27. Anzai, H. et al. Relation between the nodal and antinodal gap and critical temperature in superconducting Bi2212. Nature Commun. 4, 1815 (2013).

    Article  CAS  Google Scholar 

  28. Zheng, G. Q., Kuhns, P. L., Reyes, A. P., Liang, B. & Lin, C. T. Critical point and the nature of the pseudogap of single-layered copper-oxide Bi2Sr2−xLaxCuO6+δ superconductors. Phys. Rev. Lett. 94, 047006 (2005).

    Article  Google Scholar 

  29. Tallon, J. L., Loram, J. W., Cooper, J. R., Panagopoulos, C. & Bernhard, C. Superfluid density in cuprate high-Tc superconductors: A new paradigm. Phys. Rev. B 68, 180501 (2003).

    Article  Google Scholar 

  30. Anukool, W., Barakat, S., Panagopoulos, C. & Cooper, J. R. Effect of hole doping on the London penetration depth in Bi2.15Sr1.85CaCu2O8+δ and Bi2.1Sr1.9Ca0.85Y0.15Cu2O8+δ . Phys. Rev. B 80, 024516 (2009).

    Article  Google Scholar 

  31. Moon, E. G. & Sachdev, S. Quantum critical point shifts under superconductivity: Pnictides and cuprates. Phys. Rev. B 82, 104516 (2010).

    Article  Google Scholar 

  32. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    Article  CAS  Google Scholar 

  33. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

    Article  CAS  Google Scholar 

  34. Yu, L. et al. Evidence for two separate energy gaps in underdoped high-temperature cuprate superconductors from broadband infrared ellipsometry. Phys. Rev. Lett. 100, 177004 (2008).

    Article  Google Scholar 

  35. Tallon, J. L., Bernhard, C., Shaked, H., Hitterman, R. L. & Jorgensen, J. D. Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7−δ . Phys. Rev. B 51, 12911–12914 (1995).

    Article  CAS  Google Scholar 

  36. Feng, D. L. et al. Electronic excitations near the Brillouin zone boundary of Bi2Sr2CaCu2O8+δ . Phys. Rev. B 65, 220501 (2002).

    Article  Google Scholar 

Download references


We thank S. Kivelson, H. Yao, A. Millis, D. Scalapino, P. Hirshfeld, B. Markiewicz, D-H. Lee, L. Yu, A. Fujimori and N. Nagaosa for fruitful discussions. ARPES experiments were performed at the Stanford Synchrotron Radiation Lightsource, operated by the Office of Basic Energy Science, US DOE. This work is supported by DOE Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

Author information

Authors and Affiliations



M.H., T.P.D. and Z-X.S. conceived the experiment. M.H., R-H.H., I.M.V., Y.H. and K.T. carried out ARPES measurements with the assistance of D.L. and R.G.M. M.H. analysed the data. Y.Y., M.I., T.S., K.F. and S.I. synthesized and characterized bulk single crystals. E.A.N., B.M. and T.P.D. performed theoretical calculations. All authors contributed to the scientific planning and discussions.

Corresponding authors

Correspondence to Makoto Hashimoto or Zhi-Xun Shen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2294 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, M., Nowadnick, E., He, RH. et al. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+δ. Nature Mater 14, 37–42 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing