Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actuation of shape-memory colloidal fibres of Janus ellipsoids

Subjects

Abstract

Many natural micrometre-scale assemblies can be actuated to control their optical, transport and mechanical properties, yet such functionality is lacking in colloidal structures synthesized thus far. Here, we show with experiments and computer simulations that Janus ellipsoids can self-assemble into self-limiting one-dimensional fibres with shape-memory properties, and that the fibrillar assemblies can be actuated on application of an external alternating-current electric field. Actuation of the fibres occurs through a sliding mechanism that permits the rapid and reversible elongation and contraction of the Janus-ellipsoid chains by ~36% and that on long timescales leads to the generation of long, uniform self-assembled fibres. Colloidal-scale actuation might be useful in microrobotics and in applications of shape-memory materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Janus-ellipsoid self-assembly at different NaCl concentrations.
Figure 2: Phase diagram and mechanism of Janus-ellipsoid self-assembly.
Figure 3: Electric-field-assisted assembly of Janus ellipsoids.
Figure 4: Actuation of Janus-ellipsoid fibres by using a.c. electric fields.
Figure 5: Changes in Janus-fibre length due to an a.c. electric field.

Similar content being viewed by others

References

  1. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  Google Scholar 

  2. Pawar, A. B. & Kretzschmar, I. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31, 150–168 (2010).

    Article  CAS  Google Scholar 

  3. Feng, L., Dreyfus, R., Sha, R., Seeman, N. C. & Chaikin, P. M. DNA patchy particles. Adv. Mater. 25, 2775–2783 (2013).

    Google Scholar 

  4. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  5. Zhang, Z., Keys, A. S., Chen, T. & Glotzer, S. C. Self-assembly of patchy particles into diamond structures through molecular mimicry. Langmuir 21, 11547–11551 (2005).

    Article  CAS  Google Scholar 

  6. Mao, X., Chen, Q. & Granick, S. Entropy favours open colloidal lattices. Nature Mater. 12, 217–222 (2013).

    Article  CAS  Google Scholar 

  7. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2009).

    Article  CAS  Google Scholar 

  8. Vacha, R. & Frenkel, D. Relation between molecular shape and the morphology of self-assembling aggregates: A simulation study. Biophys. J. 101, 1432–1439 (2011).

    Article  CAS  Google Scholar 

  9. Shah, A. A., Schultz, B., Kohlstedt, K. L., Glotzer, S. C. & Solomon, M. J. Synthesis, assembly, and image analysis of spheroidal patchy particles. Langmuir 29, 4688–4696 (2013).

    Article  CAS  Google Scholar 

  10. Liu, Y., Li, W., Perez, T., Gunton, J. D. & Brett, G. Self assembly of Janus ellipsoids. Langmuir 28, 3–9 (2011).

    Article  Google Scholar 

  11. Chaudhary, K., Chen, Q., Juarez, J. J., Granick, S. & Lewis, J. A. Janus colloidal matchsticks. J. Am. Chem. Soc. 134, 12901–12903 (2012).

    Article  CAS  Google Scholar 

  12. Kuijk, A., van Blaaderen, A. & Imhof, A. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J. Am. Chem. Soc. 133, 2346–2349 (2011).

    Article  CAS  Google Scholar 

  13. Lumsdon, S. O., Kaler, E. W. & Velev, O. D. Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20, 2108–2116 (2004).

    Article  CAS  Google Scholar 

  14. Singh, J. P., Lele, P. P., Nettesheim, F., Wagner, N. J. & Furst, E. M. One-and two-dimensional assembly of colloidal ellipsoids in AC electric fields. Phys. Rev. E 79, 050401 (2009).

    Google Scholar 

  15. Gangwal, S., Cayre, O. J. & Velev, O. D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir 24, 13312–13320 (2008).

    Article  CAS  Google Scholar 

  16. Ren, B., Ruditskiy, A., Song, J. H. & Kretzschmar, I. Assembly behavior of iron oxide-capped Janus particles in a magnetic field. Langmuir 28, 1149–1156 (2011).

    Article  Google Scholar 

  17. Yethiraj, A., Wouterse, A., Groh, B. & van Blaaderen, A. Nature of an electric-field-induced colloidal martensitic transition. Phys. Rev. Lett. 92, 058301 (2004).

    Article  Google Scholar 

  18. Demirörs, A. F., Johnson, P. M., van Kats, C. M., van Blaaderen, A. & Imhof, A. Directed self-assembly of colloidal dumbbells with an electric field. Langmuir 26, 14466–14471 (2010).

    Article  Google Scholar 

  19. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys, (Revised Reprint) (CRC Press, 1992).

    Book  Google Scholar 

  20. Anderson, J. A. & Glotzer, S. C. The development and expansion of HOOMD-Blue through six years of GPU proliferation. Preprint at http://arXiv.org/1308.5587 (2013)

  21. Nguyen, T. D., Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units. Comput. Phys. Commun. 182, 2307–2313 (2011).

    Article  CAS  Google Scholar 

  22. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    CAS  Google Scholar 

  23. Chaudhary, K., Juárez, J. J., Chen, Q., Granick, S. & Lewis, J. A. Reconfigurable assemblies of Janus rods in AC electric fields. Soft Matter 10, 1320–1324 (2014).

    Article  CAS  Google Scholar 

  24. Halsey, T. C. & Toor, W. Structure of electrorheological fluids. Phys. Rev. Lett. 65, 2820–2823 (1990).

    Article  CAS  Google Scholar 

  25. Barros, K., Sinkovits, D. & Luijten, E. Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140, 064903 (2014).

    Article  Google Scholar 

  26. Dogterom, M., Kerssemakers, J. W. J., Romet-Lemonne, G. & Janson, M. E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 17, 67–74 (2005).

    Article  CAS  Google Scholar 

  27. Linke, W. A., Popov, V. I. & Pollack, G. H. Passive and active tension in single cardiac myofibrils. Biophys. J. 67, 782–792 (1994).

    Article  CAS  Google Scholar 

  28. Footer, M. J., Kerssemakers, J. W. J., Theriot, J. A. & Dogterom, M. Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl Acad. Sci. USA 104, 2181–2186 (2007).

    Article  CAS  Google Scholar 

  29. Rogach, A. L., Kotov, N. A., Koktysh, D. S., Ostrander, J. W. & Ragoisha, G. A. Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals. Chem. Mater. 12, 2721–2726 (2000).

    Article  CAS  Google Scholar 

  30. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  31. Vermolen, E. C. M. et al. Fabrication of large binary colloidal crystals with a NaCl structure. Proc. Natl Acad. Sci. USA 106, 16063–16067 (2009).

    Article  CAS  Google Scholar 

  32. Shah, A. A. et al. Liquid crystal order in colloidal suspensions of spheroidal particles by direct current electric field assembly. Small 8, 1551–1562 (2012).

    Article  CAS  Google Scholar 

  33. Shields, I. V. et al. Field-directed assembly of patchy anisotropic microparticles with defined shape. Soft Matter 9, 9219–9229 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Army Research Office under Grant Award No. W911NF-10-1-0518 and by the Assistant Secretary of Defense for Research and Engineering, US Department of Defense [DOD/ASD(R&E)] under Award No. N00244-09-1-0062.

Author information

Authors and Affiliations

Authors

Contributions

A.A.S. and M.J.S. conceived the research and designed the experiments. A.A.S. synthesized the particles, developed the imaging methods and created the assembly devices. A.A.S. and W.Z. performed the experiments. B.S. and S.C.G. designed the computer simulations. B.S. performed the simulations and produced the computer-generated renderings. A.A.S., B.S., S.C.G. and M.J.S. analysed the data and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Aayush A. Shah, Benjamin Schultz or Michael J. Solomon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1805 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 8145 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 2734 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 2934 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 22118 kb)

Supplementary Movie 5

Supplementary Movie 5 (MOV 1828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A., Schultz, B., Zhang, W. et al. Actuation of shape-memory colloidal fibres of Janus ellipsoids. Nature Mater 14, 117–124 (2015). https://doi.org/10.1038/nmat4111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing