Smart hybrid materials by conjugation of responsive polymers to biomacromolecules

Abstract

The properties and applications of biomacromolecules, for example proteins, can be enhanced by the covalent attachment of synthetic polymers. This Review discusses the modification of these biomacromolecules with stimuli-responsive polymers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The three primary methods for synthesizing polymer bioconjugates by controlled radical polymerization.
Figure 2: The conjugation of polymers, initiating groups or polymerizable groups can be accomplished by targeting amino or thiol functional groups present on the biomacromolecule.
Figure 3: An example of a smart polymer bioconjugate prepared by the grafting-to approach.
Figure 4: A variety of less common, but highly effective functionalization strategies employed in the synthesis of polymer bioconjugates.
Figure 5: The grafting-from method can prepare polymer bioconjugates in which the block copolymer is of relatively high molecular weight or has block-type architectures.
Figure 6: The grafting-through approach allows the in situ formation of Pluronic–fibrinogen-based hydrogels.
Figure 7: The responsive nature of smart polymer bioconjugates allows the selective isolation of biological macromolecules from complex mixtures.
Figure 8: Responsive polymers can be used to reversibly control access to the active site of enzymes to which they are attached.

References

  1. 1

    Mulhaupt, R. Hermann Staudinger and the origin of macromolecular chemistry. Angew. Chem. Int. Ed. 43, 1054–1063 (2004).

    Article  Google Scholar 

  2. 2

    Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51, 135–153 (1975).

    CAS  Article  Google Scholar 

  3. 3

    Abuchowski, A., McCoy, J. R., Palczuk, N. C., Van Es, T. & Davis, F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    CAS  Google Scholar 

  4. 4

    Abuchowski, A., Van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    CAS  Google Scholar 

  5. 5

    Chilkoti, A., Dreher, M. R., Meyer, D. E. & Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Del. Rev. 54, 613–630 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Stayton, P. S. et al. Intelligent biohybrid materials for therapeutic and imaging agent delivery. Proc. IEEE 93, 726–736 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Hoffman, A. S. & Stayton, P. S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. 32, 922–932 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Stayton, P. S. & Hoffman, A. S. in Multifunctional Pharmaceutical Nanocarriers (ed. Torchilin, V.) 143–159 (Springer, 2008).

    Google Scholar 

  9. 9

    Meng, F., Hennink, W. E. & Zhong, Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30, 2180–2198 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Shakya, A. K., Sami, H., Srivastava, A. & Kumar, A. Stability of responsive polymer-protein bioconjugates. Prog. Polym. Sci. 35, 459–486 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Du, F.-S., Wang, Y., Zhang, R. & Li, Z.-C. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6, 835–848 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Grover, G. N. & Maynard, H. D. Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14, 818–827 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Le Droumaguet, B. & Nicolas, J. Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym. Chem. 1, 563–598 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Apostolovic, B., Deacon, S. P. E., Duncan, R. & Klok, H. A. Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers. Biomacromolecules 11, 1187–1195 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Jenkins, A. D., Jones, R. G. & Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem. 82, 483–491 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Matyjaszewski, K. & Xia, J. H. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Chiefari, J. et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 31, 5559–5562 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process - A second update. Australian J. Chem. 62, 1402–1472 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Perrier, S. & Takolpuckdee, P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization. J. Polym. Sci. Part A 43, 5347–5393 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Semsarilar, M. & Perrier, S. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chem. 2, 811–820 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Hoffman, A. S. & Stayton, P. S. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol. Symp. 207, 139–151 (2004).

    CAS  Article  Google Scholar 

  25. 25

    Lutz, J.-F. & Boerner, H. G. Modern trends in polymer bio-conjugates design. Prog. Polym. Sci. 33, 1–39 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Chen, J. P., Yang, H. J. & Hoffman, A. S. Polymer-protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide). Biomaterials 11, 625–630 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Ding, Z., Chen, G. & Hoffman, A. S. Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. J. Biomed. Mater. Res. 39, 498–505 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Fong, R. B., Ding, Z., Hoffman, A. S. & Stayton, P. S. Affinity separation using an Fv antibody fragment-“smart” polymer conjugate. Biotechnol. Bioeng. 79, 271–276 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Bulmus, V., Patir, S., Tuncel, S. A. & Piskin, E. Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di- and tri-peptides. J. Control. Release 76, 265–274 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Heredia, K. L., Tolstyka, Z. P. & Maynard, H. D. Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules 40, 4772–4779 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Hilbrig, F., Stocker, G., Schlappi, J. M., Kocher, H. & Freitag, R. Utilization of group specific ligands in the downstream processing of proteins by affinity precipitation. Food Bioprod. Process. 84, 28–36 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Ivanov, A. E. et al. Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: a step toward a thermosensitive industrial biocatalyst. Biotechnol. Progr. 19, 1167–1175 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Liu, Y. et al. Novel renewable immunosensors based on temperature-sensitive PNIPAAm bioconjugates. Biosens. Bioelectron. 24, 710–715 (2008).

    Article  CAS  Google Scholar 

  34. 34

    Vazquez-Dorbatt, V., Tolstyka, Z. P. & Maynard, H. D. Synthesis of aminooxy end-functionalized pNIPAAm by RAFT polymerization for protein and polysaccharide conjugation. Macromolecules 42, 7650–7656 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Wiss, K. T., Krishna, O. D., Roth, P. J., Kiick, K. L. & Theato, P. A Versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42, 3860–3863 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Li, H., Bapat, A. P., Li, M. & Sumerlin, B. S. Protein conjugation of thermoresponsive amine-reactive polymers prepared by RAFT. Polym. Chem. 2, 323–327 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Wilke, P., Brooks, W. L. A., Kühnle, R., Sumerlin, B. & Börner, H. G. in Progress in Controlled Radical Polymerization: Materials and Applications Vol. 1101 (eds Matyjaszewski, K., Sumerlin, B. S. & Tsarevsky, N. V.) Ch. 18, 271–285 (ACS, 2012).

    Google Scholar 

  38. 38

    Danial, M., Tran, C. M., Jolliffe, K. A. & Perrier, S. Thermal gating in lipid membranes using thermoresponsive cyclic peptide-polymer conjugates. J. Am. Chem. Soc. 136, 8018–8026 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Theato, P., Kim, J.-U. & Lee, J.-C. Controlled radical polymerization of active ester monomers: Precursor polymers for highly functionalized materials. Macromolecules 37, 5475–5478 (2004).

    CAS  Article  Google Scholar 

  40. 40

    Roy, D., Nehilla, B. J., Lai, J. J. & Stayton, P. S. Stimuli-responsive polymer-antibody conjugates via RAFT and tetrafluorophenyl active ester chemistry. ACS Macro Lett. 2, 132–136 (2013).

    CAS  Article  Google Scholar 

  41. 41

    Bromberg, L. & Salvati, L. Bioactive surfaces via immobilization of self-assembling polymers onto hydrophobic materials. Bioconjugate Chem. 10, 678–686 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Bulmus, V., Patir, S., Tuncel, S. A. & Piskin, E. Conjugates of poly(N-isopropyl acrylamide-co-acrylic acid) with alanine monopeptide, dipeptide, and tripeptide. J. Appl. Polym. Sci. 88, 2012–2019 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Ebara, M. et al. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505–510 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Ebara, M. et al. Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10, 1125–1135 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Liu, H. et al. Preparation of biodegradable and thermoresponsive enzyme–polymer conjugates with controllable bioactivity via RAFT polymerization. Eur. Polym. J. 49, 2949–2960 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Maynard, H. D., Broyer, R. M. & Kolodziej, C. M. in Click Chemistry for Biotechnology and Materials Science (ed. Lahann, J.) 53–68 (John Wiley & Sons, 2009).

    Google Scholar 

  47. 47

    Bailon, P. et al. Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjugate Chem. 12, 195–202 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Kochendoerfer, G. G. Site-specific polymer modification of therapeutic proteins. Curr. Opin. Chem. Biol. 9, 555–560 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Thordarson, P., Droumaguet, B. & Velonia, K. Well-defined protein-polymer conjugates-synthesis and potential applications. Appl. Microbiol. Biotechnol. 73, 243–254 (2006).

    CAS  Article  Google Scholar 

  50. 50

    Stenzel, M. H. Bioconjugation using thiols: Old chemistry rediscovered to connect polymers with nature's building blocks. ACS Macro Lett. 2, 14–18 (2013).

    CAS  Article  Google Scholar 

  51. 51

    Bencini, M., Ranucci, E., Ferruti, P. & Manfredi, A. New stimuli responsive poly(1-vinylpyrrolidin-2-one) bearing pendant activated disulfide groups. Macromol. Rapid Commun. 27, 1060–1066 (2006).

    CAS  Article  Google Scholar 

  52. 52

    Chang, C. W., Nguyen, T. H. & Maynard, H. D. Thermoprecipitation of glutathione S-transferase by glutathione-poly(N-isopropylacrylamide) prepared by RAFT polymerization. Macromol. Rapid Commun. 31, 1691–1695 (2010).

    CAS  Article  Google Scholar 

  53. 53

    Crownover, E. F., Convertine, A. J. & Stayton, P. S. pH-responsive polymer-antigen vaccine bioconjugates. Polym. Chem. 2, 1499–1504 (2011).

    CAS  Article  Google Scholar 

  54. 54

    Duvall, C. L., Convertine, A. J., Benoit, D. S. W., Hoffman, A. S. & Stayton, P. S. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol. Pharmaceutics 7, 468–476 (2010).

    CAS  Article  Google Scholar 

  55. 55

    Chen, X. et al. Thermoresponsive worms for expansion and release of human embryonic stem cells. Biomacromolecules 15, 844–855 (2014).

    CAS  Article  Google Scholar 

  56. 56

    Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    CAS  Article  Google Scholar 

  57. 57

    Hoyle, C. E., Lowe, A. B. & Bowman, C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010).

    CAS  Article  Google Scholar 

  58. 58

    Li, M., De, P., Li, H. & Sumerlin, B. S. Conjugation of RAFT-generated polymers to proteins by two consecutive thiol-ene reactions. Polym. Chem. 1, 854–859 (2010).

    CAS  Article  Google Scholar 

  59. 59

    Heredia, K. L., Grover, G. N., Tao, L. & Maynard, H. D. Synthesis of heterotelechelic polymers for conjugation of two different proteins. Macromolecules 42, 2360–2367 (2009).

    CAS  Article  Google Scholar 

  60. 60

    Heredia, K. L., Tao, L., Grover, G. N. & Maynard, H. D. Heterotelechelic polymers for capture and release of protein-polymer conjugates. Polym. Chem. 1, 168–170 (2010).

    CAS  Article  Google Scholar 

  61. 61

    Tao, L. et al. Synthesis of maleimide-end-functionalized star polymers and multimeric protein-polymer conjugates. Macromolecules 42, 8028–8033 (2009).

    CAS  Article  Google Scholar 

  62. 62

    Shimoboji, T. et al. Photoresponsive polymer-enzyme switches. Proc. Natl Acad. Sci. USA 99, 16592–16596 (2002).

    CAS  Article  Google Scholar 

  63. 63

    Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S. & Stayton, P. S. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjugate Chem. 14, 517–525 (2003).

    CAS  Article  Google Scholar 

  64. 64

    Shimoboji, T., Ding, Z. L., Stayton, P. S. & Hoffman, A. S. Photoswitching of ligand association with a photoresponsive polymer-protein conjugate. Bioconjugate Chem. 13, 915–919 (2002).

    CAS  Article  Google Scholar 

  65. 65

    Bulmus, V., Ding, Z., Long, C. J., Stayton, P. S. & Hoffman, A. S. Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjugate Chem. 11, 78–83 (2000).

    CAS  Article  Google Scholar 

  66. 66

    Deiters, A., Cropp, T. A., Summerer, D., Mukherji, M. & Schultz, P. G. Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg. Med. Chem. Lett. 14, 5743–5745 (2004).

    CAS  Article  Google Scholar 

  67. 67

    Kakwere, H., Chun, C. K. Y., Jolliffe, K. A., Payne, R. J. & Perrier, S. Polymer-peptide chimeras for the multivalent display of immunogenic peptides. Chem. Commun. 46, 2188–2190 (2010).

    CAS  Article  Google Scholar 

  68. 68

    Dehn, S., Castelletto, V., Hamley, I. W. & Perrier, S. Altering peptide fibrillization by polymer conjugation. Biomacromolecules 13, 2739–2747 (2012).

    CAS  Article  Google Scholar 

  69. 69

    Kakwere, H., Payne, R. J., Jolliffe, K. A. & Perrier, S. Self-assembling macromolecular chimeras: controlling fibrillization of a β-sheet forming peptide by polymer conjugation. Soft Matter 7, 3754–3757 (2011).

    CAS  Article  Google Scholar 

  70. 70

    Chapman, R., Warr, G. G., Perrier, S. & Jolliffe, K. A. Water-soluble and pH-responsive polymeric nanotubes from cyclic peptide templates. Chem. Eur. J. 19, 1955–1961 (2013).

    CAS  Article  Google Scholar 

  71. 71

    Chapman, R., Bouten, P. J. M., Hoogenboom, R., Jolliffe, K. A. & Perrier, S. Thermoresponsive cyclic peptide–poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chem. Commun. 49, 6522–6524 (2013).

    CAS  Article  Google Scholar 

  72. 72

    Stayton, P. S. et al. Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378, 472–474 (1995).

    CAS  Article  Google Scholar 

  73. 73

    Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S. & Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411, 59–62 (2001).

    CAS  Article  Google Scholar 

  74. 74

    Ding, Z. et al. Temperature control of biotin binding and release with a streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjugate Chem. 10, 395–400 (1999).

    CAS  Article  Google Scholar 

  75. 75

    Shimoboji, T., Ding, Z., Stayton, P. S. & Hoffman, A. S. Mechanistic investigation of smart polymer-protein conjugates. Bioconjugate Chem. 12, 314–319 (2001).

    CAS  Article  Google Scholar 

  76. 76

    Chilkoti, A., Chen, G., Stayton, P. S. & Hoffman, A. S. Site-specific conjugation of a temperature-sensitive polymer to a genetically engineered protein. Bioconjugate Chem. 5, 504–507 (1994).

    CAS  Article  Google Scholar 

  77. 77

    Buller, J., Laschewsky, A., Lutz, J. F. & Wischerhoff, E. Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polym. Chem. 2, 1486–1489 (2011).

    CAS  Article  Google Scholar 

  78. 78

    Pelah, A., Bharde, A. & Jovin, T. M. Protein manipulation by stimuli-responsive polymers encapsulated in erythrocyte ghosts. Soft Matter 5, 1006–1010 (2009).

    CAS  Article  Google Scholar 

  79. 79

    Rinne, J. et al. Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnol. 7, 1 (2007).

    Article  CAS  Google Scholar 

  80. 80

    Kulkarni, S. et al. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7, 2736–2741 (2006).

    CAS  Article  Google Scholar 

  81. 81

    Kulkarni, S., Schilli, C., Mueller, A. H. E., Hoffman, A. S. & Stayton, P. S. Reversible meso-scale smart polymer-protein particles of controlled sizes. Bioconjugate Chem. 15, 747–753 (2004).

    CAS  Article  Google Scholar 

  82. 82

    Malmstadt, N., Hyre, D. E., Ding, Z., Hoffman, A. S. & Stayton, P. S. Affinity thermoprecipitation and recovery of biotinylated biomolecules via a mutant streptavidin-smart polymer conjugate. Bioconjugate Chem. 14, 575–580 (2003).

    CAS  Article  Google Scholar 

  83. 83

    Bontempo, D., Li, R. C., Ly, T., Brubaker, C. E. & Maynard, H. D. One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP. Chem. Commun. 4702–4704 (2005).

  84. 84

    Carter, S. et al. Highly branched poly(N-isopropylacrylamide) for use in protein purification. Biomacromolecules 7, 1124–1130 (2006).

    CAS  Article  Google Scholar 

  85. 85

    Kumar, A., Galaev, I. Y. & Mattiasson, B. Metal chelate affinity precipitation: a new approach to protein purification. Bioseparation 7, 185–194 (1999).

    Article  Google Scholar 

  86. 86

    Mattiasson, B., Kumar, A., Ivanov, A. E. & Galaev, I. Y. Metal-chelate affinity precipitation of proteins using responsive polymers. Nature Protoc. 2, 213–220 (2007).

    CAS  Article  Google Scholar 

  87. 87

    Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nature Chem. Biol. 7, 876–884 (2011).

    CAS  Article  Google Scholar 

  88. 88

    Sletten, E. M. & Bertozzi, C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666–676 (2011).

    CAS  Article  Google Scholar 

  89. 89

    Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nature Chem. Biol. 1, 13–21 (2005).

    CAS  Article  Google Scholar 

  90. 90

    Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    CAS  Article  Google Scholar 

  91. 91

    Robin, M. P. et al. Conjugation-induced fluorescent labeling of proteins and polymers using dithiomaleimides. J. Am. Chem. Soc. 135, 2875–2878 (2013).

    CAS  Article  Google Scholar 

  92. 92

    Smith, M. E. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Jones, M. W. et al. Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chem. Commun. 48, 4064–4066 (2012).

    CAS  Article  Google Scholar 

  94. 94

    Joshi, N. S., Whitaker, L. R. & Francis, M. B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).

    CAS  Article  Google Scholar 

  95. 95

    Hooker, J. M., Kovacs, E. W. & Francis, M. B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718–3719 (2004).

    CAS  Article  Google Scholar 

  96. 96

    Tilley, S. D. & Francis, M. B. Tyrosine-selective protein alkylation using π-allylpalladium complexes. J. Am. Chem. Soc. 128, 1080–1081 (2006).

    CAS  Article  Google Scholar 

  97. 97

    Marchan, V., Ortega, S., Pulido, D., Pedroso, E. & Grandas, A. Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. Nucleic Acids Res. 34, e24 (2006).

    Article  CAS  Google Scholar 

  98. 98

    Stolowitz, M. L. Phenylboronic acid complexes for bioconjugate preparation. US patent 5594111 A (1997).

  99. 99

    Le Roch, K. et al. Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J. Biol. Chem. 275, 8952–8958 (2000).

    CAS  Article  Google Scholar 

  100. 100

    Cambre, J. N. S. & Brent S. Biomedical applications of boronic acid polymers. Polymer 52, 4631–4643 (2011).

    CAS  Article  Google Scholar 

  101. 101

    Lahann, J. (ed.) Click Chemistry for Biotechnology and Materials Science (Wiley, 2009).

    Google Scholar 

  102. 102

    Lemieux, G. A. & Bertozzi, C. R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16, 506–513 (1998).

    CAS  Article  Google Scholar 

  103. 103

    Hermanson, G. T. (ed.) Bioconjugate Techniques (Academic Press, 2013).

    Google Scholar 

  104. 104

    Lackey, C. A., Press, O. W., Hoffman, A. S. & Stayton, P. S. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjugate Chem. 13, 996–1001 (2002).

    CAS  Article  Google Scholar 

  105. 105

    Bulmus, V. et al. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93, 105–120 (2003).

    CAS  Article  Google Scholar 

  106. 106

    Ito, Y., Kotoura, M., Chung, D. J. & Imanishi, Y. Trypsin modification by vinyl polymers with variable solubilities in response to external signals. Bioconjugate Chem. 4, 358–361 (1993).

    CAS  Article  Google Scholar 

  107. 107

    Cao, Z. F., Jin, Y., Zhang, B. A., Miao, Q. & Ma, C. Y. A novel temperature- and pH-responsive polymer-biomolecule conjugate composed of casein and poly(N-isopropylacrylamide). Iran. Polym. J. 19, 689–698 (2010).

    CAS  Google Scholar 

  108. 108

    El-Sherif, H., El-Masry, M. & Abou Taleb, M. F. pH-sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. J. Appl. Polym. Sci. 115, 2050–2059 (2010).

    CAS  Article  Google Scholar 

  109. 109

    Klok, H.-A. Biological-synthetic hybrid block copolymers: Combining the best from two worlds. J. Polym. Sci. Part A 43, 1–17 (2005).

    CAS  Article  Google Scholar 

  110. 110

    Loewik, D. W. P. M., Ayres, L., Smeenk, J. M. & Van Hest, J. C. M. Synthesis of bio-inspired hybrid polymers using peptide synthesis and protein engineering. Adv. Polym. Sci. 202, 19–52 (2006).

    CAS  Article  Google Scholar 

  111. 111

    Nicolas, J., Mantovani, G. & Haddleton, D. M. Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol. Rapid Commun. 28, 1083–1111 (2007).

    CAS  Article  Google Scholar 

  112. 112

    Morikawa, N. & Matsuda, T. Thermoresponsive artificial extracellular matrix: N-isopropylacrylamide-graft-copolymerized gelatin. J. Biomater. Sci. Polym. Ed. 13, 167–183 (2002).

    CAS  Article  Google Scholar 

  113. 113

    Ohya, S. & Matsuda, T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: Molecular and formulation parameters vs. cell proliferation potential. J. Biomater. Sci. Polym. Ed. 16, 809–827 (2005).

    CAS  Article  Google Scholar 

  114. 114

    Becker, M. L., Liu, J. & Wooley, K. L. Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins. Biomacromolecules 6, 220–228 (2005).

    CAS  Article  Google Scholar 

  115. 115

    Molawi, K. & Studer, A. Reversible switching of substrate activity of poly-N-isopropylacrylamide peptide conjugates. Chem. Commun. 5173–5175 (2007).

  116. 116

    Chenal, M. et al. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polym. Chem. 2, 1523–1530 (2011).

    CAS  Article  Google Scholar 

  117. 117

    Lele, B. S., Murata, H., Matyjaszewski, K. & Russell, A. J. Synthesis of uniform protein-polymer conjugates. Biomacromolecules 6, 3380–3387 (2005).

    CAS  Article  Google Scholar 

  118. 118

    Heredia, K. L. et al. In situ preparation of protein-“smart” polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 127, 16955–16960 (2005).

    CAS  Article  Google Scholar 

  119. 119

    Bontempo, D. & Maynard, H. D. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. J. Am. Chem. Soc. 127, 6508–6509 (2005).

    CAS  Article  Google Scholar 

  120. 120

    Bebis, K., Jones, M. W., Haddleton, D. M. & Gibson, M. I. Thermoresponsive behaviour of poly (oligo(ethyleneglycol methacrylate)s and their protein conjugates: importance of concentration and solvent system. Polym. Chem. 2, 975–982 (2011).

    CAS  Article  Google Scholar 

  121. 121

    Yasayan, G. et al. Responsive hybrid block co-polymer conjugates of proteins-controlled architecture to modulate substrate specificity and solution behaviour. Polym. Chem. 2, 1567–1578 (2011).

    CAS  Article  Google Scholar 

  122. 122

    Cummings, C., Murata, H., Koepsel, R. & Russell, A. J. Tailoring enzyme activity and stability using polymer-based protein engineering. Biomaterials 34, 7437–7443 (2013).

    CAS  Article  Google Scholar 

  123. 123

    Couet, J. & Biesalski, M. Surface-initiated ATRP of N-isopropylacrylamide from initiator-modified self-assembled peptide nanotubes. Macromolecules 39, 7258–7268 (2006).

    CAS  Article  Google Scholar 

  124. 124

    Couet, J. et al. Peptide-polymer hybrid nanotubes. Angew. Chem. Int. Ed. 44, 3297–3301 (2005).

    CAS  Article  Google Scholar 

  125. 125

    Ionov, L., Bocharova, V. & Diez, S. Biotemplated synthesis of stimuli-responsive nanopatterned polymer brushes on microtubules. Soft Matter 5, 67–71 (2009).

    CAS  Article  Google Scholar 

  126. 126

    Gao, W. et al. In situ growth of a stoichiometric PEG-like conjugate at a protein's N-terminus with significantly improved pharmacokinetics. Proc. Natl Acad. Sci. USA 106, 15231–15236 (2009).

    CAS  Article  Google Scholar 

  127. 127

    Gao, W., Liu, W., Christensen, T., Zalutsky, M. R. & Chilkoti, A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl Acad. Sci. USA 107, 16432–16437 (2010).

    CAS  Article  Google Scholar 

  128. 128

    Lowe, A. B. & McCormick, C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci. 32, 283–351 (2007).

    CAS  Article  Google Scholar 

  129. 129

    McCormick, C. L., Sumerlin, B. S., Lokitz, B. S. & Stempka, J. E. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter 4, 1760–1773 (2008).

    CAS  Article  Google Scholar 

  130. 130

    Boyer, C. et al. Bioapplications of RAFT Polymerization. Chem. Rev. 109, 5402–5436 (2009).

    CAS  Article  Google Scholar 

  131. 131

    Hentschel, J., Bleek, K., Ernst, O., Lutz, J.-F. & Boerner, H. G. Easy access to bioactive peptide-polymer conjugates via RAFT. Macromolecules 41, 1073–1075 (2008).

    CAS  Article  Google Scholar 

  132. 132

    Zhao, Y. L. & Perrier, S. Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chem. Commun. 4294–4296 (2007).

  133. 133

    Liu, J. Q. et al. In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem. Int. Ed. 46, 3099–3103 (2007).

    CAS  Article  Google Scholar 

  134. 134

    Boyer, C. et al. Well-defined protein-polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 129, 7145–7154 (2007).

    CAS  Article  Google Scholar 

  135. 135

    De, P., Li, M., Gondi, S. R. & Sumerlin, B. S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 130, 11288–11289 (2008).

    CAS  Article  Google Scholar 

  136. 136

    Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett. 1, 141–145 (2012).

    CAS  Article  Google Scholar 

  137. 137

    Li, H. M., Li, M., Yu, X., Bapat, A. P. & Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2, 1531–1535 (2011).

    CAS  Article  Google Scholar 

  138. 138

    Li, M., Li, H. M., De, P. & Sumerlin, B. S. Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol. Rapid Commun. 32, 354–359 (2011).

    CAS  Article  Google Scholar 

  139. 139

    Auditore-Hargreaves, K. et al. Phase-separation immunoassays. Clin. Chem. 33, 1509–1516 (1987).

    CAS  Google Scholar 

  140. 140

    Furukawa, H., Shimojyo, R., Ohnishi, N., Fukuda, H. & Kondo, A. Affinity selection of target cells from cell surface displayed libraries: a novel procedure using thermo-responsive magnetic nanoparticles. Appl. Microbiol. Biotechnol. 62, 478–483 (2003).

    CAS  Article  Google Scholar 

  141. 141

    Monji, N. & Hoffman, A. S. A novel immunoassay system and bioseparation process based on thermal phase separating polymers. Appl. Biochem. Biotechnol. 14, 107–120 (1987).

    CAS  Article  Google Scholar 

  142. 142

    Oishi, J. et al. A protein kinase signal-responsive gene carrier modified RGD peptide. Bioorg. Med. Chem. Lett. 16, 5740–5743 (2006).

    CAS  Article  Google Scholar 

  143. 143

    Shachaf, Y., Gonen-Wadmany, M. & Seliktar, D. The biocompatibility of Pluronic (R) F127 fibrinogen-based hydrogels. Biomaterials 31, 2836–2847 (2010).

    CAS  Article  Google Scholar 

  144. 144

    Frisman, I., Shachaf, Y., Seliktar, D. & Bianco-Peled, H. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: Structural characterization. Langmuir 27, 6977–6986 (2011).

    CAS  Article  Google Scholar 

  145. 145

    Christian, D. A. et al. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 71, 463–474 (2009).

    CAS  Article  Google Scholar 

  146. 146

    Cun, D., Jensen, L. B., Nielsen, H. M., Moghimi, M. & Foged, C. Polymeric nanocarriers for siRNA delivery: challenges and future prospects. J. Biomed. Nanotechnol. 4, 258–275 (2008).

    CAS  Article  Google Scholar 

  147. 147

    Fattal, E. & Bochot, A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int. J. Pharm. 364, 237–248 (2008).

    CAS  Article  Google Scholar 

  148. 148

    Mok, H. & Park, T. G. Functional polymers for targeted delivery of nucleic acid drugs. Macromol. Biosci. 9, 731–743 (2009).

    CAS  Article  Google Scholar 

  149. 149

    Nishiyama, N. & Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Therapeut. 112, 630–648 (2006).

    CAS  Article  Google Scholar 

  150. 150

    Schaffert, D. & Wagner, E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 15, 1131–1138 (2008).

    CAS  Article  Google Scholar 

  151. 151

    Fong, R. B., Ding, Z., Long, C. J., Hoffman, A. S. & Stayton, P. S. Thermoprecipitation of streptavidin via oligonucleotide-mediated self-assembly with poly(N-isopropylacrylamide). Bioconjugate Chem. 10, 720–725 (1999).

    CAS  Article  Google Scholar 

  152. 152

    Murata, M. et al. Thermo responsive DNA/polymer conjugate for intelligent antisense strategy. Chem. Lett. 32, 266–267 (2003).

    CAS  Article  Google Scholar 

  153. 153

    Murata, M. et al. Temperature-dependent regulation of antisense activity using a DNA/poly(N-isopropylacrylamide) conjugate. Chem. Lett. 32, 986–987 (2003).

    CAS  Article  Google Scholar 

  154. 154

    Mori, T. & Maeda, M. Stability change of DNA-carrying colloidal particle induced by hybridization with target DNA. Polym. J. 34, 624–628 (2002).

    CAS  Article  Google Scholar 

  155. 155

    Mori, T., Umeno, D. & Maeda, M. Sequence-specific affinity precipitation of oligonucleotide using poly(N-isopropylacrylamide)-oligonucleotide conjugate. Biotechnol. Bioeng. 72, 261–268 (2001).

    CAS  Article  Google Scholar 

  156. 156

    Mori, T. & Maeda, M. Formation of DNA-carrying colloidal particle from poly(N-isopropylacrylamide)-graft-DNA copolymer and its assembly through hybridization. Polym. J. 33, 830–833 (2001).

    CAS  Article  Google Scholar 

  157. 157

    Murata, M. et al. Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett. 13, 3967–3970 (2003).

    CAS  Article  Google Scholar 

  158. 158

    Tang, Z., Mori, T., Takarada, T. & Maeda, M. Recognition of DNA sequence and chain length by using DNA-linked nanoparticle. Anal. Sci. 17, a357–a359 (2001).

    CAS  Article  Google Scholar 

  159. 159

    Guo, W. et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew. Chem. Int. Ed. 53, 10134–10138 (2014).

    CAS  Article  Google Scholar 

  160. 160

    Hoshino, K., Taniguchi, M., Kitao, T., Morohashi, S. & Sasakura, T. Preparation of a new thermo-responsive adsorbent with maltose as a ligand and its application to affinity precipitation. Biotechnol. Bioeng. 60, 568–579 (1998).

    CAS  Article  Google Scholar 

  161. 161

    Pan, L.-C. & Chien, C.-C. A novel application of thermo-responsive polymer to affinity precipitation of polysaccharide. J. Biochem. Biophys. Methods 55, 87–94 (2003).

    CAS  Article  Google Scholar 

  162. 162

    Spizzirri, U. G. et al. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr. Polym. 84, 517–523 (2011).

    CAS  Article  Google Scholar 

  163. 163

    Ohya, S., Nakayama, Y. & Matsuda, T. Thermoresponsive artificial extracellular matrix for tissue engineering: Hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2, 856–863 (2001).

    CAS  Article  Google Scholar 

  164. 164

    Matsumoto, T. et al. Poly(N-substituted-acrylamide)-branched schizophyllans are useful for selective recovery of homopolynucleotides through convenient and quick precipitation procedures. Polym. J. 37, 177–185 (2005).

    CAS  Article  Google Scholar 

  165. 165

    Lu, D., Zhang, K. & Liu, Z. Protein refolding assisted by an artificial chaperone using temperature stimuli responsive polymer as the stripper. Biochem. Eng. J. 25, 141–149 (2005).

    CAS  Article  Google Scholar 

  166. 166

    Anastase-Ravion, S., Ding, Z., Pelle, A., Hoffman, A. S. & Letourneur, D. New antibody purification procedure using a thermally responsive poly(N-isopropylacrylamide)-dextran derivative conjugate. J. Chromatogr. B 761, 247–254 (2001).

    CAS  Article  Google Scholar 

  167. 167

    Hua, D. B. et al. Smart chitosan-based stimuli-responsive nanocarriers for the controlled delivery of hydrophobic pharmaceuticals. Macromolecules 44, 1298–1302 (2011).

    CAS  Article  Google Scholar 

  168. 168

    Lu, D., Liu, Z., Zhang, M., Wang, X. & Liu, Z. Dextran-grafted-PNIPAAm as an artificial chaperone for protein refolding. Biochem. Eng. J. 27, 336–343 (2006).

    CAS  Article  Google Scholar 

  169. 169

    Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  CAS  Google Scholar 

  170. 170

    Hoffman, A. S. et al. Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 52, 577–586 (2000).

    CAS  Article  Google Scholar 

  171. 171

    Hoffman, J. M. et al. A helical flow, circular microreactor for separating and enriching “smart” polymer-antibody capture reagents. Lab Chip 10, 3130–3138 (2010).

    CAS  Article  Google Scholar 

  172. 172

    Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    CAS  Article  Google Scholar 

  173. 173

    Golden, A. L. et al. Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjugate Chem. 21, 1820–1826 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

A portion of this work was supported by the National Science Foundation (DMR-1410223; B.S.S.), Henkel (I.C.), the Royal Society Wolfson Award (S.P.) and the Monash-Warwick Alliance (S.P.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Brent S. Sumerlin or Sébastien Perrier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cobo, I., Li, M., Sumerlin, B. et al. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Mater 14, 143–159 (2015). https://doi.org/10.1038/nmat4106

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing