Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Smart hybrid materials by conjugation of responsive polymers to biomacromolecules

Abstract

The properties and applications of biomacromolecules, for example proteins, can be enhanced by the covalent attachment of synthetic polymers. This Review discusses the modification of these biomacromolecules with stimuli-responsive polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The three primary methods for synthesizing polymer bioconjugates by controlled radical polymerization.
Figure 2: The conjugation of polymers, initiating groups or polymerizable groups can be accomplished by targeting amino or thiol functional groups present on the biomacromolecule.
Figure 3: An example of a smart polymer bioconjugate prepared by the grafting-to approach.
Figure 4: A variety of less common, but highly effective functionalization strategies employed in the synthesis of polymer bioconjugates.
Figure 5: The grafting-from method can prepare polymer bioconjugates in which the block copolymer is of relatively high molecular weight or has block-type architectures.
Figure 6: The grafting-through approach allows the in situ formation of Pluronic–fibrinogen-based hydrogels.
Figure 7: The responsive nature of smart polymer bioconjugates allows the selective isolation of biological macromolecules from complex mixtures.
Figure 8: Responsive polymers can be used to reversibly control access to the active site of enzymes to which they are attached.

Similar content being viewed by others

References

  1. Mulhaupt, R. Hermann Staudinger and the origin of macromolecular chemistry. Angew. Chem. Int. Ed. 43, 1054–1063 (2004).

    Article  Google Scholar 

  2. Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp. 51, 135–153 (1975).

    Article  CAS  Google Scholar 

  3. Abuchowski, A., McCoy, J. R., Palczuk, N. C., Van Es, T. & Davis, F. F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977).

    CAS  Google Scholar 

  4. Abuchowski, A., Van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    CAS  Google Scholar 

  5. Chilkoti, A., Dreher, M. R., Meyer, D. E. & Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Del. Rev. 54, 613–630 (2002).

    Article  CAS  Google Scholar 

  6. Stayton, P. S. et al. Intelligent biohybrid materials for therapeutic and imaging agent delivery. Proc. IEEE 93, 726–736 (2005).

    Article  CAS  Google Scholar 

  7. Hoffman, A. S. & Stayton, P. S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. 32, 922–932 (2007).

    Article  CAS  Google Scholar 

  8. Stayton, P. S. & Hoffman, A. S. in Multifunctional Pharmaceutical Nanocarriers (ed. Torchilin, V.) 143–159 (Springer, 2008).

    Book  Google Scholar 

  9. Meng, F., Hennink, W. E. & Zhong, Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30, 2180–2198 (2009).

    Article  CAS  Google Scholar 

  10. Shakya, A. K., Sami, H., Srivastava, A. & Kumar, A. Stability of responsive polymer-protein bioconjugates. Prog. Polym. Sci. 35, 459–486 (2010).

    Article  CAS  Google Scholar 

  11. Du, F.-S., Wang, Y., Zhang, R. & Li, Z.-C. Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter 6, 835–848 (2010).

    Article  CAS  Google Scholar 

  12. Grover, G. N. & Maynard, H. D. Protein-polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14, 818–827 (2010).

    Article  CAS  Google Scholar 

  13. Le Droumaguet, B. & Nicolas, J. Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym. Chem. 1, 563–598 (2010).

    Article  CAS  Google Scholar 

  14. Apostolovic, B., Deacon, S. P. E., Duncan, R. & Klok, H. A. Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers. Biomacromolecules 11, 1187–1195 (2010).

    Article  CAS  Google Scholar 

  15. Jenkins, A. D., Jones, R. G. & Moad, G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl. Chem. 82, 483–491 (2010).

    Article  CAS  Google Scholar 

  16. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  17. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    Article  CAS  Google Scholar 

  18. Kamigaito, M., Ando, T. & Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689–3745 (2001).

    Article  CAS  Google Scholar 

  19. Matyjaszewski, K. & Xia, J. H. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  Google Scholar 

  20. Chiefari, J. et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 31, 5559–5562 (1998).

    Article  CAS  Google Scholar 

  21. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process - A second update. Australian J. Chem. 62, 1402–1472 (2009).

    Article  CAS  Google Scholar 

  22. Perrier, S. & Takolpuckdee, P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization. J. Polym. Sci. Part A 43, 5347–5393 (2005).

    Article  CAS  Google Scholar 

  23. Semsarilar, M. & Perrier, S. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chem. 2, 811–820 (2010).

    Article  CAS  Google Scholar 

  24. Hoffman, A. S. & Stayton, P. S. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol. Symp. 207, 139–151 (2004).

    Article  CAS  Google Scholar 

  25. Lutz, J.-F. & Boerner, H. G. Modern trends in polymer bio-conjugates design. Prog. Polym. Sci. 33, 1–39 (2008).

    Article  CAS  Google Scholar 

  26. Chen, J. P., Yang, H. J. & Hoffman, A. S. Polymer-protein conjugates. I. Effect of protein conjugation on the cloud point of poly(N-isopropylacrylamide). Biomaterials 11, 625–630 (1990).

    Article  CAS  Google Scholar 

  27. Ding, Z., Chen, G. & Hoffman, A. S. Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. J. Biomed. Mater. Res. 39, 498–505 (1998).

    Article  CAS  Google Scholar 

  28. Fong, R. B., Ding, Z., Hoffman, A. S. & Stayton, P. S. Affinity separation using an Fv antibody fragment-“smart” polymer conjugate. Biotechnol. Bioeng. 79, 271–276 (2002).

    Article  CAS  Google Scholar 

  29. Bulmus, V., Patir, S., Tuncel, S. A. & Piskin, E. Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di- and tri-peptides. J. Control. Release 76, 265–274 (2001).

    Article  CAS  Google Scholar 

  30. Heredia, K. L., Tolstyka, Z. P. & Maynard, H. D. Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules 40, 4772–4779 (2007).

    Article  CAS  Google Scholar 

  31. Hilbrig, F., Stocker, G., Schlappi, J. M., Kocher, H. & Freitag, R. Utilization of group specific ligands in the downstream processing of proteins by affinity precipitation. Food Bioprod. Process. 84, 28–36 (2006).

    Article  CAS  Google Scholar 

  32. Ivanov, A. E. et al. Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: a step toward a thermosensitive industrial biocatalyst. Biotechnol. Progr. 19, 1167–1175 (2003).

    Article  CAS  Google Scholar 

  33. Liu, Y. et al. Novel renewable immunosensors based on temperature-sensitive PNIPAAm bioconjugates. Biosens. Bioelectron. 24, 710–715 (2008).

    Article  CAS  Google Scholar 

  34. Vazquez-Dorbatt, V., Tolstyka, Z. P. & Maynard, H. D. Synthesis of aminooxy end-functionalized pNIPAAm by RAFT polymerization for protein and polysaccharide conjugation. Macromolecules 42, 7650–7656 (2009).

    Article  CAS  Google Scholar 

  35. Wiss, K. T., Krishna, O. D., Roth, P. J., Kiick, K. L. & Theato, P. A Versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42, 3860–3863 (2009).

    Article  CAS  Google Scholar 

  36. Li, H., Bapat, A. P., Li, M. & Sumerlin, B. S. Protein conjugation of thermoresponsive amine-reactive polymers prepared by RAFT. Polym. Chem. 2, 323–327 (2011).

    Article  CAS  Google Scholar 

  37. Wilke, P., Brooks, W. L. A., Kühnle, R., Sumerlin, B. & Börner, H. G. in Progress in Controlled Radical Polymerization: Materials and Applications Vol. 1101 (eds Matyjaszewski, K., Sumerlin, B. S. & Tsarevsky, N. V.) Ch. 18, 271–285 (ACS, 2012).

    Book  Google Scholar 

  38. Danial, M., Tran, C. M., Jolliffe, K. A. & Perrier, S. Thermal gating in lipid membranes using thermoresponsive cyclic peptide-polymer conjugates. J. Am. Chem. Soc. 136, 8018–8026 (2014).

    Article  CAS  Google Scholar 

  39. Theato, P., Kim, J.-U. & Lee, J.-C. Controlled radical polymerization of active ester monomers: Precursor polymers for highly functionalized materials. Macromolecules 37, 5475–5478 (2004).

    Article  CAS  Google Scholar 

  40. Roy, D., Nehilla, B. J., Lai, J. J. & Stayton, P. S. Stimuli-responsive polymer-antibody conjugates via RAFT and tetrafluorophenyl active ester chemistry. ACS Macro Lett. 2, 132–136 (2013).

    Article  CAS  Google Scholar 

  41. Bromberg, L. & Salvati, L. Bioactive surfaces via immobilization of self-assembling polymers onto hydrophobic materials. Bioconjugate Chem. 10, 678–686 (1999).

    Article  CAS  Google Scholar 

  42. Bulmus, V., Patir, S., Tuncel, S. A. & Piskin, E. Conjugates of poly(N-isopropyl acrylamide-co-acrylic acid) with alanine monopeptide, dipeptide, and tripeptide. J. Appl. Polym. Sci. 88, 2012–2019 (2003).

    Article  CAS  Google Scholar 

  43. Ebara, M. et al. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505–510 (2004).

    Article  CAS  Google Scholar 

  44. Ebara, M. et al. Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng. 10, 1125–1135 (2004).

    Article  CAS  Google Scholar 

  45. Liu, H. et al. Preparation of biodegradable and thermoresponsive enzyme–polymer conjugates with controllable bioactivity via RAFT polymerization. Eur. Polym. J. 49, 2949–2960 (2013).

    Article  CAS  Google Scholar 

  46. Maynard, H. D., Broyer, R. M. & Kolodziej, C. M. in Click Chemistry for Biotechnology and Materials Science (ed. Lahann, J.) 53–68 (John Wiley & Sons, 2009).

    Book  Google Scholar 

  47. Bailon, P. et al. Rational design of a potent, long-lasting form of interferon: A 40 kDa branched polyethylene glycol-conjugated interferon α-2a for the treatment of hepatitis C. Bioconjugate Chem. 12, 195–202 (2001).

    Article  CAS  Google Scholar 

  48. Kochendoerfer, G. G. Site-specific polymer modification of therapeutic proteins. Curr. Opin. Chem. Biol. 9, 555–560 (2005).

    Article  CAS  Google Scholar 

  49. Thordarson, P., Droumaguet, B. & Velonia, K. Well-defined protein-polymer conjugates-synthesis and potential applications. Appl. Microbiol. Biotechnol. 73, 243–254 (2006).

    Article  CAS  Google Scholar 

  50. Stenzel, M. H. Bioconjugation using thiols: Old chemistry rediscovered to connect polymers with nature's building blocks. ACS Macro Lett. 2, 14–18 (2013).

    Article  CAS  Google Scholar 

  51. Bencini, M., Ranucci, E., Ferruti, P. & Manfredi, A. New stimuli responsive poly(1-vinylpyrrolidin-2-one) bearing pendant activated disulfide groups. Macromol. Rapid Commun. 27, 1060–1066 (2006).

    Article  CAS  Google Scholar 

  52. Chang, C. W., Nguyen, T. H. & Maynard, H. D. Thermoprecipitation of glutathione S-transferase by glutathione-poly(N-isopropylacrylamide) prepared by RAFT polymerization. Macromol. Rapid Commun. 31, 1691–1695 (2010).

    Article  CAS  Google Scholar 

  53. Crownover, E. F., Convertine, A. J. & Stayton, P. S. pH-responsive polymer-antigen vaccine bioconjugates. Polym. Chem. 2, 1499–1504 (2011).

    Article  CAS  Google Scholar 

  54. Duvall, C. L., Convertine, A. J., Benoit, D. S. W., Hoffman, A. S. & Stayton, P. S. Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol. Pharmaceutics 7, 468–476 (2010).

    Article  CAS  Google Scholar 

  55. Chen, X. et al. Thermoresponsive worms for expansion and release of human embryonic stem cells. Biomacromolecules 15, 844–855 (2014).

    Article  CAS  Google Scholar 

  56. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  57. Hoyle, C. E., Lowe, A. B. & Bowman, C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010).

    Article  CAS  Google Scholar 

  58. Li, M., De, P., Li, H. & Sumerlin, B. S. Conjugation of RAFT-generated polymers to proteins by two consecutive thiol-ene reactions. Polym. Chem. 1, 854–859 (2010).

    Article  CAS  Google Scholar 

  59. Heredia, K. L., Grover, G. N., Tao, L. & Maynard, H. D. Synthesis of heterotelechelic polymers for conjugation of two different proteins. Macromolecules 42, 2360–2367 (2009).

    Article  CAS  Google Scholar 

  60. Heredia, K. L., Tao, L., Grover, G. N. & Maynard, H. D. Heterotelechelic polymers for capture and release of protein-polymer conjugates. Polym. Chem. 1, 168–170 (2010).

    Article  CAS  Google Scholar 

  61. Tao, L. et al. Synthesis of maleimide-end-functionalized star polymers and multimeric protein-polymer conjugates. Macromolecules 42, 8028–8033 (2009).

    Article  CAS  Google Scholar 

  62. Shimoboji, T. et al. Photoresponsive polymer-enzyme switches. Proc. Natl Acad. Sci. USA 99, 16592–16596 (2002).

    Article  CAS  Google Scholar 

  63. Shimoboji, T., Larenas, E., Fowler, T., Hoffman, A. S. & Stayton, P. S. Temperature-induced switching of enzyme activity with smart polymer-enzyme conjugates. Bioconjugate Chem. 14, 517–525 (2003).

    Article  CAS  Google Scholar 

  64. Shimoboji, T., Ding, Z. L., Stayton, P. S. & Hoffman, A. S. Photoswitching of ligand association with a photoresponsive polymer-protein conjugate. Bioconjugate Chem. 13, 915–919 (2002).

    Article  CAS  Google Scholar 

  65. Bulmus, V., Ding, Z., Long, C. J., Stayton, P. S. & Hoffman, A. S. Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconjugate Chem. 11, 78–83 (2000).

    Article  CAS  Google Scholar 

  66. Deiters, A., Cropp, T. A., Summerer, D., Mukherji, M. & Schultz, P. G. Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg. Med. Chem. Lett. 14, 5743–5745 (2004).

    Article  CAS  Google Scholar 

  67. Kakwere, H., Chun, C. K. Y., Jolliffe, K. A., Payne, R. J. & Perrier, S. Polymer-peptide chimeras for the multivalent display of immunogenic peptides. Chem. Commun. 46, 2188–2190 (2010).

    Article  CAS  Google Scholar 

  68. Dehn, S., Castelletto, V., Hamley, I. W. & Perrier, S. Altering peptide fibrillization by polymer conjugation. Biomacromolecules 13, 2739–2747 (2012).

    Article  CAS  Google Scholar 

  69. Kakwere, H., Payne, R. J., Jolliffe, K. A. & Perrier, S. Self-assembling macromolecular chimeras: controlling fibrillization of a β-sheet forming peptide by polymer conjugation. Soft Matter 7, 3754–3757 (2011).

    Article  CAS  Google Scholar 

  70. Chapman, R., Warr, G. G., Perrier, S. & Jolliffe, K. A. Water-soluble and pH-responsive polymeric nanotubes from cyclic peptide templates. Chem. Eur. J. 19, 1955–1961 (2013).

    Article  CAS  Google Scholar 

  71. Chapman, R., Bouten, P. J. M., Hoogenboom, R., Jolliffe, K. A. & Perrier, S. Thermoresponsive cyclic peptide–poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chem. Commun. 49, 6522–6524 (2013).

    Article  CAS  Google Scholar 

  72. Stayton, P. S. et al. Control of protein–ligand recognition using a stimuli-responsive polymer. Nature 378, 472–474 (1995).

    Article  CAS  Google Scholar 

  73. Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S. & Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411, 59–62 (2001).

    Article  CAS  Google Scholar 

  74. Ding, Z. et al. Temperature control of biotin binding and release with a streptavidin-poly(N-isopropylacrylamide) site-specific conjugate. Bioconjugate Chem. 10, 395–400 (1999).

    Article  CAS  Google Scholar 

  75. Shimoboji, T., Ding, Z., Stayton, P. S. & Hoffman, A. S. Mechanistic investigation of smart polymer-protein conjugates. Bioconjugate Chem. 12, 314–319 (2001).

    Article  CAS  Google Scholar 

  76. Chilkoti, A., Chen, G., Stayton, P. S. & Hoffman, A. S. Site-specific conjugation of a temperature-sensitive polymer to a genetically engineered protein. Bioconjugate Chem. 5, 504–507 (1994).

    Article  CAS  Google Scholar 

  77. Buller, J., Laschewsky, A., Lutz, J. F. & Wischerhoff, E. Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polym. Chem. 2, 1486–1489 (2011).

    Article  CAS  Google Scholar 

  78. Pelah, A., Bharde, A. & Jovin, T. M. Protein manipulation by stimuli-responsive polymers encapsulated in erythrocyte ghosts. Soft Matter 5, 1006–1010 (2009).

    Article  CAS  Google Scholar 

  79. Rinne, J. et al. Internalization of novel non-viral vector TAT-streptavidin into human cells. BMC Biotechnol. 7, 1 (2007).

    Article  CAS  Google Scholar 

  80. Kulkarni, S. et al. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules 7, 2736–2741 (2006).

    Article  CAS  Google Scholar 

  81. Kulkarni, S., Schilli, C., Mueller, A. H. E., Hoffman, A. S. & Stayton, P. S. Reversible meso-scale smart polymer-protein particles of controlled sizes. Bioconjugate Chem. 15, 747–753 (2004).

    Article  CAS  Google Scholar 

  82. Malmstadt, N., Hyre, D. E., Ding, Z., Hoffman, A. S. & Stayton, P. S. Affinity thermoprecipitation and recovery of biotinylated biomolecules via a mutant streptavidin-smart polymer conjugate. Bioconjugate Chem. 14, 575–580 (2003).

    Article  CAS  Google Scholar 

  83. Bontempo, D., Li, R. C., Ly, T., Brubaker, C. E. & Maynard, H. D. One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP. Chem. Commun. 4702–4704 (2005).

  84. Carter, S. et al. Highly branched poly(N-isopropylacrylamide) for use in protein purification. Biomacromolecules 7, 1124–1130 (2006).

    Article  CAS  Google Scholar 

  85. Kumar, A., Galaev, I. Y. & Mattiasson, B. Metal chelate affinity precipitation: a new approach to protein purification. Bioseparation 7, 185–194 (1999).

    Article  Google Scholar 

  86. Mattiasson, B., Kumar, A., Ivanov, A. E. & Galaev, I. Y. Metal-chelate affinity precipitation of proteins using responsive polymers. Nature Protoc. 2, 213–220 (2007).

    Article  CAS  Google Scholar 

  87. Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nature Chem. Biol. 7, 876–884 (2011).

    Article  CAS  Google Scholar 

  88. Sletten, E. M. & Bertozzi, C. R. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666–676 (2011).

    Article  CAS  Google Scholar 

  89. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nature Chem. Biol. 1, 13–21 (2005).

    Article  CAS  Google Scholar 

  90. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  Google Scholar 

  91. Robin, M. P. et al. Conjugation-induced fluorescent labeling of proteins and polymers using dithiomaleimides. J. Am. Chem. Soc. 135, 2875–2878 (2013).

    Article  CAS  Google Scholar 

  92. Smith, M. E. et al. Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J. Am. Chem. Soc. 132, 1960–1965 (2010).

    Article  CAS  Google Scholar 

  93. Jones, M. W. et al. Highly efficient disulfide bridging polymers for bioconjugates from radical-compatible dithiophenol maleimides. Chem. Commun. 48, 4064–4066 (2012).

    Article  CAS  Google Scholar 

  94. Joshi, N. S., Whitaker, L. R. & Francis, M. B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. J. Am. Chem. Soc. 126, 15942–15943 (2004).

    Article  CAS  Google Scholar 

  95. Hooker, J. M., Kovacs, E. W. & Francis, M. B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718–3719 (2004).

    Article  CAS  Google Scholar 

  96. Tilley, S. D. & Francis, M. B. Tyrosine-selective protein alkylation using π-allylpalladium complexes. J. Am. Chem. Soc. 128, 1080–1081 (2006).

    Article  CAS  Google Scholar 

  97. Marchan, V., Ortega, S., Pulido, D., Pedroso, E. & Grandas, A. Diels-Alder cycloadditions in water for the straightforward preparation of peptide-oligonucleotide conjugates. Nucleic Acids Res. 34, e24 (2006).

    Article  CAS  Google Scholar 

  98. Stolowitz, M. L. Phenylboronic acid complexes for bioconjugate preparation. US patent 5594111 A (1997).

  99. Le Roch, K. et al. Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J. Biol. Chem. 275, 8952–8958 (2000).

    Article  CAS  Google Scholar 

  100. Cambre, J. N. S. & Brent S. Biomedical applications of boronic acid polymers. Polymer 52, 4631–4643 (2011).

    Article  CAS  Google Scholar 

  101. Lahann, J. (ed.) Click Chemistry for Biotechnology and Materials Science (Wiley, 2009).

    Book  Google Scholar 

  102. Lemieux, G. A. & Bertozzi, C. R. Chemoselective ligation reactions with proteins, oligosaccharides and cells. Trends Biotechnol. 16, 506–513 (1998).

    Article  CAS  Google Scholar 

  103. Hermanson, G. T. (ed.) Bioconjugate Techniques (Academic Press, 2013).

    Google Scholar 

  104. Lackey, C. A., Press, O. W., Hoffman, A. S. & Stayton, P. S. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjugate Chem. 13, 996–1001 (2002).

    Article  CAS  Google Scholar 

  105. Bulmus, V. et al. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J. Control. Release 93, 105–120 (2003).

    Article  CAS  Google Scholar 

  106. Ito, Y., Kotoura, M., Chung, D. J. & Imanishi, Y. Trypsin modification by vinyl polymers with variable solubilities in response to external signals. Bioconjugate Chem. 4, 358–361 (1993).

    Article  CAS  Google Scholar 

  107. Cao, Z. F., Jin, Y., Zhang, B. A., Miao, Q. & Ma, C. Y. A novel temperature- and pH-responsive polymer-biomolecule conjugate composed of casein and poly(N-isopropylacrylamide). Iran. Polym. J. 19, 689–698 (2010).

    CAS  Google Scholar 

  108. El-Sherif, H., El-Masry, M. & Abou Taleb, M. F. pH-sensitive hydrogels based on bovine serum albumin for anticancer drug delivery. J. Appl. Polym. Sci. 115, 2050–2059 (2010).

    Article  CAS  Google Scholar 

  109. Klok, H.-A. Biological-synthetic hybrid block copolymers: Combining the best from two worlds. J. Polym. Sci. Part A 43, 1–17 (2005).

    Article  CAS  Google Scholar 

  110. Loewik, D. W. P. M., Ayres, L., Smeenk, J. M. & Van Hest, J. C. M. Synthesis of bio-inspired hybrid polymers using peptide synthesis and protein engineering. Adv. Polym. Sci. 202, 19–52 (2006).

    Article  CAS  Google Scholar 

  111. Nicolas, J., Mantovani, G. & Haddleton, D. M. Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol. Rapid Commun. 28, 1083–1111 (2007).

    Article  CAS  Google Scholar 

  112. Morikawa, N. & Matsuda, T. Thermoresponsive artificial extracellular matrix: N-isopropylacrylamide-graft-copolymerized gelatin. J. Biomater. Sci. Polym. Ed. 13, 167–183 (2002).

    Article  CAS  Google Scholar 

  113. Ohya, S. & Matsuda, T. Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: Molecular and formulation parameters vs. cell proliferation potential. J. Biomater. Sci. Polym. Ed. 16, 809–827 (2005).

    Article  CAS  Google Scholar 

  114. Becker, M. L., Liu, J. & Wooley, K. L. Functionalized micellar assemblies prepared via block copolymers synthesized by living free radical polymerization upon peptide-loaded resins. Biomacromolecules 6, 220–228 (2005).

    Article  CAS  Google Scholar 

  115. Molawi, K. & Studer, A. Reversible switching of substrate activity of poly-N-isopropylacrylamide peptide conjugates. Chem. Commun. 5173–5175 (2007).

  116. Chenal, M. et al. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polym. Chem. 2, 1523–1530 (2011).

    Article  CAS  Google Scholar 

  117. Lele, B. S., Murata, H., Matyjaszewski, K. & Russell, A. J. Synthesis of uniform protein-polymer conjugates. Biomacromolecules 6, 3380–3387 (2005).

    Article  CAS  Google Scholar 

  118. Heredia, K. L. et al. In situ preparation of protein-“smart” polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 127, 16955–16960 (2005).

    Article  CAS  Google Scholar 

  119. Bontempo, D. & Maynard, H. D. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. J. Am. Chem. Soc. 127, 6508–6509 (2005).

    Article  CAS  Google Scholar 

  120. Bebis, K., Jones, M. W., Haddleton, D. M. & Gibson, M. I. Thermoresponsive behaviour of poly (oligo(ethyleneglycol methacrylate)s and their protein conjugates: importance of concentration and solvent system. Polym. Chem. 2, 975–982 (2011).

    Article  CAS  Google Scholar 

  121. Yasayan, G. et al. Responsive hybrid block co-polymer conjugates of proteins-controlled architecture to modulate substrate specificity and solution behaviour. Polym. Chem. 2, 1567–1578 (2011).

    Article  CAS  Google Scholar 

  122. Cummings, C., Murata, H., Koepsel, R. & Russell, A. J. Tailoring enzyme activity and stability using polymer-based protein engineering. Biomaterials 34, 7437–7443 (2013).

    Article  CAS  Google Scholar 

  123. Couet, J. & Biesalski, M. Surface-initiated ATRP of N-isopropylacrylamide from initiator-modified self-assembled peptide nanotubes. Macromolecules 39, 7258–7268 (2006).

    Article  CAS  Google Scholar 

  124. Couet, J. et al. Peptide-polymer hybrid nanotubes. Angew. Chem. Int. Ed. 44, 3297–3301 (2005).

    Article  CAS  Google Scholar 

  125. Ionov, L., Bocharova, V. & Diez, S. Biotemplated synthesis of stimuli-responsive nanopatterned polymer brushes on microtubules. Soft Matter 5, 67–71 (2009).

    Article  CAS  Google Scholar 

  126. Gao, W. et al. In situ growth of a stoichiometric PEG-like conjugate at a protein's N-terminus with significantly improved pharmacokinetics. Proc. Natl Acad. Sci. USA 106, 15231–15236 (2009).

    Article  CAS  Google Scholar 

  127. Gao, W., Liu, W., Christensen, T., Zalutsky, M. R. & Chilkoti, A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl Acad. Sci. USA 107, 16432–16437 (2010).

    Article  CAS  Google Scholar 

  128. Lowe, A. B. & McCormick, C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci. 32, 283–351 (2007).

    Article  CAS  Google Scholar 

  129. McCormick, C. L., Sumerlin, B. S., Lokitz, B. S. & Stempka, J. E. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter 4, 1760–1773 (2008).

    Article  CAS  Google Scholar 

  130. Boyer, C. et al. Bioapplications of RAFT Polymerization. Chem. Rev. 109, 5402–5436 (2009).

    Article  CAS  Google Scholar 

  131. Hentschel, J., Bleek, K., Ernst, O., Lutz, J.-F. & Boerner, H. G. Easy access to bioactive peptide-polymer conjugates via RAFT. Macromolecules 41, 1073–1075 (2008).

    Article  CAS  Google Scholar 

  132. Zhao, Y. L. & Perrier, S. Synthesis of well-defined conjugated copolymers by RAFT polymerization using cysteine and glutathione-based chain transfer agents. Chem. Commun. 4294–4296 (2007).

  133. Liu, J. Q. et al. In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew. Chem. Int. Ed. 46, 3099–3103 (2007).

    Article  CAS  Google Scholar 

  134. Boyer, C. et al. Well-defined protein-polymer conjugates via in situ RAFT polymerization. J. Am. Chem. Soc. 129, 7145–7154 (2007).

    Article  CAS  Google Scholar 

  135. De, P., Li, M., Gondi, S. R. & Sumerlin, B. S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization. J. Am. Chem. Soc. 130, 11288–11289 (2008).

    Article  CAS  Google Scholar 

  136. Sumerlin, B. S. Proteins as initiators of controlled radical polymerization: Grafting-from via ATRP and RAFT. ACS Macro Lett. 1, 141–145 (2012).

    Article  CAS  Google Scholar 

  137. Li, H. M., Li, M., Yu, X., Bapat, A. P. & Sumerlin, B. S. Block copolymer conjugates prepared by sequentially grafting from proteins via RAFT. Polym. Chem. 2, 1531–1535 (2011).

    Article  CAS  Google Scholar 

  138. Li, M., Li, H. M., De, P. & Sumerlin, B. S. Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol. Rapid Commun. 32, 354–359 (2011).

    Article  CAS  Google Scholar 

  139. Auditore-Hargreaves, K. et al. Phase-separation immunoassays. Clin. Chem. 33, 1509–1516 (1987).

    CAS  Google Scholar 

  140. Furukawa, H., Shimojyo, R., Ohnishi, N., Fukuda, H. & Kondo, A. Affinity selection of target cells from cell surface displayed libraries: a novel procedure using thermo-responsive magnetic nanoparticles. Appl. Microbiol. Biotechnol. 62, 478–483 (2003).

    Article  CAS  Google Scholar 

  141. Monji, N. & Hoffman, A. S. A novel immunoassay system and bioseparation process based on thermal phase separating polymers. Appl. Biochem. Biotechnol. 14, 107–120 (1987).

    Article  CAS  Google Scholar 

  142. Oishi, J. et al. A protein kinase signal-responsive gene carrier modified RGD peptide. Bioorg. Med. Chem. Lett. 16, 5740–5743 (2006).

    Article  CAS  Google Scholar 

  143. Shachaf, Y., Gonen-Wadmany, M. & Seliktar, D. The biocompatibility of Pluronic (R) F127 fibrinogen-based hydrogels. Biomaterials 31, 2836–2847 (2010).

    Article  CAS  Google Scholar 

  144. Frisman, I., Shachaf, Y., Seliktar, D. & Bianco-Peled, H. Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: Structural characterization. Langmuir 27, 6977–6986 (2011).

    Article  CAS  Google Scholar 

  145. Christian, D. A. et al. Polymersome carriers: From self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 71, 463–474 (2009).

    Article  CAS  Google Scholar 

  146. Cun, D., Jensen, L. B., Nielsen, H. M., Moghimi, M. & Foged, C. Polymeric nanocarriers for siRNA delivery: challenges and future prospects. J. Biomed. Nanotechnol. 4, 258–275 (2008).

    Article  CAS  Google Scholar 

  147. Fattal, E. & Bochot, A. State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int. J. Pharm. 364, 237–248 (2008).

    Article  CAS  Google Scholar 

  148. Mok, H. & Park, T. G. Functional polymers for targeted delivery of nucleic acid drugs. Macromol. Biosci. 9, 731–743 (2009).

    Article  CAS  Google Scholar 

  149. Nishiyama, N. & Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Therapeut. 112, 630–648 (2006).

    Article  CAS  Google Scholar 

  150. Schaffert, D. & Wagner, E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 15, 1131–1138 (2008).

    Article  CAS  Google Scholar 

  151. Fong, R. B., Ding, Z., Long, C. J., Hoffman, A. S. & Stayton, P. S. Thermoprecipitation of streptavidin via oligonucleotide-mediated self-assembly with poly(N-isopropylacrylamide). Bioconjugate Chem. 10, 720–725 (1999).

    Article  CAS  Google Scholar 

  152. Murata, M. et al. Thermo responsive DNA/polymer conjugate for intelligent antisense strategy. Chem. Lett. 32, 266–267 (2003).

    Article  CAS  Google Scholar 

  153. Murata, M. et al. Temperature-dependent regulation of antisense activity using a DNA/poly(N-isopropylacrylamide) conjugate. Chem. Lett. 32, 986–987 (2003).

    Article  CAS  Google Scholar 

  154. Mori, T. & Maeda, M. Stability change of DNA-carrying colloidal particle induced by hybridization with target DNA. Polym. J. 34, 624–628 (2002).

    Article  CAS  Google Scholar 

  155. Mori, T., Umeno, D. & Maeda, M. Sequence-specific affinity precipitation of oligonucleotide using poly(N-isopropylacrylamide)-oligonucleotide conjugate. Biotechnol. Bioeng. 72, 261–268 (2001).

    Article  CAS  Google Scholar 

  156. Mori, T. & Maeda, M. Formation of DNA-carrying colloidal particle from poly(N-isopropylacrylamide)-graft-DNA copolymer and its assembly through hybridization. Polym. J. 33, 830–833 (2001).

    Article  CAS  Google Scholar 

  157. Murata, M. et al. Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett. 13, 3967–3970 (2003).

    Article  CAS  Google Scholar 

  158. Tang, Z., Mori, T., Takarada, T. & Maeda, M. Recognition of DNA sequence and chain length by using DNA-linked nanoparticle. Anal. Sci. 17, a357–a359 (2001).

    Article  CAS  Google Scholar 

  159. Guo, W. et al. Switchable bifunctional stimuli-triggered poly-N-isopropylacrylamide/DNA hydrogels. Angew. Chem. Int. Ed. 53, 10134–10138 (2014).

    Article  CAS  Google Scholar 

  160. Hoshino, K., Taniguchi, M., Kitao, T., Morohashi, S. & Sasakura, T. Preparation of a new thermo-responsive adsorbent with maltose as a ligand and its application to affinity precipitation. Biotechnol. Bioeng. 60, 568–579 (1998).

    Article  CAS  Google Scholar 

  161. Pan, L.-C. & Chien, C.-C. A novel application of thermo-responsive polymer to affinity precipitation of polysaccharide. J. Biochem. Biophys. Methods 55, 87–94 (2003).

    Article  CAS  Google Scholar 

  162. Spizzirri, U. G. et al. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr. Polym. 84, 517–523 (2011).

    Article  CAS  Google Scholar 

  163. Ohya, S., Nakayama, Y. & Matsuda, T. Thermoresponsive artificial extracellular matrix for tissue engineering: Hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2, 856–863 (2001).

    Article  CAS  Google Scholar 

  164. Matsumoto, T. et al. Poly(N-substituted-acrylamide)-branched schizophyllans are useful for selective recovery of homopolynucleotides through convenient and quick precipitation procedures. Polym. J. 37, 177–185 (2005).

    Article  CAS  Google Scholar 

  165. Lu, D., Zhang, K. & Liu, Z. Protein refolding assisted by an artificial chaperone using temperature stimuli responsive polymer as the stripper. Biochem. Eng. J. 25, 141–149 (2005).

    Article  CAS  Google Scholar 

  166. Anastase-Ravion, S., Ding, Z., Pelle, A., Hoffman, A. S. & Letourneur, D. New antibody purification procedure using a thermally responsive poly(N-isopropylacrylamide)-dextran derivative conjugate. J. Chromatogr. B 761, 247–254 (2001).

    Article  CAS  Google Scholar 

  167. Hua, D. B. et al. Smart chitosan-based stimuli-responsive nanocarriers for the controlled delivery of hydrophobic pharmaceuticals. Macromolecules 44, 1298–1302 (2011).

    Article  CAS  Google Scholar 

  168. Lu, D., Liu, Z., Zhang, M., Wang, X. & Liu, Z. Dextran-grafted-PNIPAAm as an artificial chaperone for protein refolding. Biochem. Eng. J. 27, 336–343 (2006).

    Article  CAS  Google Scholar 

  169. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater. 9, 101–113 (2010).

    Article  CAS  Google Scholar 

  170. Hoffman, A. S. et al. Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 52, 577–586 (2000).

    Article  CAS  Google Scholar 

  171. Hoffman, J. M. et al. A helical flow, circular microreactor for separating and enriching “smart” polymer-antibody capture reagents. Lab Chip 10, 3130–3138 (2010).

    Article  CAS  Google Scholar 

  172. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    Article  CAS  Google Scholar 

  173. Golden, A. L. et al. Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjugate Chem. 21, 1820–1826 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A portion of this work was supported by the National Science Foundation (DMR-1410223; B.S.S.), Henkel (I.C.), the Royal Society Wolfson Award (S.P.) and the Monash-Warwick Alliance (S.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brent S. Sumerlin or Sébastien Perrier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobo, I., Li, M., Sumerlin, B. et al. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature Mater 14, 143–159 (2015). https://doi.org/10.1038/nmat4106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing