Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme electronic bandgap modification in laser-crystallized silicon optical fibres

Subjects

Abstract

For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon’s transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication of an a-Si optical fibre.
Figure 2: Simulations of the thermodynamics and kinetics of a laser-irradiated silicon optical fibre.
Figure 3: Material analysis of laser-crystallized Si optical fibres.
Figure 4: Crystallographic study of laser-crystallized Si optical fibres.

Similar content being viewed by others

References

  1. Leuthold, J. et al. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  CAS  Google Scholar 

  2. Reed, G. T. Device physics: The optical age of silicon. Nature 427, 595–596 (2004).

    Article  CAS  Google Scholar 

  3. Lui, X. et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguide. Nature Photon. 4, 557–560 (2010).

    Article  Google Scholar 

  4. Luo, L. W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nature Commun. 5, 3069 (2014).

    Article  Google Scholar 

  5. Lipson, M. Silicon photonics: An exercise in self control. Nature Photon. 1, 18–19 (2007).

    Article  CAS  Google Scholar 

  6. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2004).

    Article  Google Scholar 

  7. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  CAS  Google Scholar 

  8. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  CAS  Google Scholar 

  9. Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006).

    Article  CAS  Google Scholar 

  10. Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Mater. 11, 148–154 (2012).

    Article  CAS  Google Scholar 

  11. Chmielak, B. et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt. Express 19, 17212–17219 (2011).

    Article  CAS  Google Scholar 

  12. Park, H. et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044–6052 (2007).

    Article  CAS  Google Scholar 

  13. Michel, J. et al. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010).

    Article  CAS  Google Scholar 

  14. Sazio, P. J. A. et al. Microstructured optical fibers as high-pressure microfluidic reactors. Science 311, 1583–1586 (2006).

    Article  CAS  Google Scholar 

  15. Capasso, F. Band-gap engineering: From physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    Article  CAS  Google Scholar 

  16. Mehta, P. et al. All-optical modulation using two-photon absorption in silicon core optical fibers. Opt. Express 19, 19078–19083 (2011).

    Article  CAS  Google Scholar 

  17. Mehta, P. et al. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Opt. Express 20, 26110–26116 (2012).

    Article  CAS  Google Scholar 

  18. Ballato, J. et al. Silicon optical fibre. Opt. Express 16, 18675–18683 (2008).

    Article  CAS  Google Scholar 

  19. Gumennik, A. et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Commun. 4, 2216 (2013).

    Article  Google Scholar 

  20. Baril, N. F. et al. Confined high-pressure chemical deposition of hydrogenated amorphous silicon. J. Am. Chem. Soc 134, 19–22 (2011).

    Article  Google Scholar 

  21. Sera, K. et al. High-performance TFT’s fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon fabelilm. Electron Devices 36, 2868–2872 (1989).

    Article  CAS  Google Scholar 

  22. Liu, S. D. & Lee, S. C. Large grain poly-Si ( 10 μm) TFTs prepared by excimer laser annealing through a thick SiON absorption layer. Electron Devices 51, 166–171 (2004).

    Article  CAS  Google Scholar 

  23. Bulgakova, N. M. et al. Energy balance of pulsed laser ablation: Thermal model revised. Appl. Phys. A 79, 1323–1326 (2004).

    Article  CAS  Google Scholar 

  24. Bovatsek, J. et al. Thin film removal mechanisms in ns-laser processing of photovoltaic materials. Thin Solid Films 518, 2897–2904 (2010).

    Article  CAS  Google Scholar 

  25. Mukherjee, S. et al. Band Structure Lab. (2014); https://nanohub.org/resources/bandstrlab

  26. Gupta, N. et al. Annealing of silicon optical fibers. J. Appl. Phys. 110, 093107 (2011).

    Article  Google Scholar 

  27. Bianco, F. et al. Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semicond. Sci. Technol. 27, 085009 (2012).

    Article  Google Scholar 

  28. Munguia, J. et al. Strain dependence of indirect band gap for strained silicon on insulator wafers. Appl. Phys. Lett. 93, 102101 (2008).

    Article  Google Scholar 

  29. Lagonigro, L. et al. Low loss silicon fibers for photonics applications. Appl. Phys. Lett. 96, 041105 (2010).

    Article  Google Scholar 

  30. Orcutt, J. et al. Low-loss polysilicon waveguides fabricated in an emulated high-volume electronics process. Opt. Express 20, 7243–7254 (2012).

    Article  CAS  Google Scholar 

  31. Masaud, T. et al. Hot-wire polysilicon waveguides with low deposition temperature. Opt. Lett. 38, 4030–4032 (2013).

    Article  Google Scholar 

  32. Preston, K. et al. High-speed all-optical modulation using polycrystalline silicon microring resonators. Appl. Phys. Lett. 92, 151104 (2008).

    Article  Google Scholar 

  33. Radeka, V. et al. LSST sensor requirements and characterization of the prototype LSST CCDs. J. Instrum. 4, P03002 (2006).

    Google Scholar 

  34. Lee, M, Y. et al. Deposited low temperature silicon GHz modulator. Opt. Express 21, 26688–26692 (2013).

    Article  Google Scholar 

  35. Avrutsky, I. & Soref, R. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Opt. Express 19, 21707–21716 (2011).

    Article  CAS  Google Scholar 

  36. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

    Google Scholar 

Download references

Acknowledgements

We acknowledge Diamond Light Source for time on Beamline I18 under proposal SP8211-1 and K. Ignatyev for technical assistance. We would also like to thank S. Boden for taking the helium ion microscope image, D. Tanner and S. Lei for valuable comments, S. Chaudhuri for help with the TEM work, and R. Soref for careful review and helpful discussions regarding the manuscript’s content. The authors acknowledge EPSRC (EP/J004863/1 & EP/I035307/1), NSF (DMR-1107894; primary US support) and the Penn State Materials Research Science and Engineering Center (NSF DMR-0820404) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

N.H., S.M. and A.C.P. designed the research. N.H. carried out the experiments and analysed the data. P.J.A.S. and N.H. designed the electrical measurements. T.D.D., J.R.S., H.Y.C. and J.V.B. developed and fabricated the a-Si fibres. N.M.B. developed the laser heating simulations. N.H. and A.C.P. wrote the manuscript; all authors contributed to the scientific discussion and revised the manuscript.

Corresponding author

Correspondence to Noel Healy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2794 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Healy, N., Mailis, S., Bulgakova, N. et al. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nature Mater 13, 1122–1127 (2014). https://doi.org/10.1038/nmat4098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing