Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oligopeptide complex for targeted non-viral gene delivery to adipocytes

Abstract

Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS–9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS–9R into obese mice confirmed specific binding of ATS–9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS–9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS–9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

Figure 1: Schematic illustration.
Figure 2: The location of prohibitin.
Figure 3: In vitro cellular uptake of ATS–9R.
Figure 4: Ex vivo and in vivo fat homing of ATS–9R and transgene expression.
Figure 5: Obesity reduction and metabolic recovery.

References

  1. 1

    Rosen, E. D. & Spiegelman, B. M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nature Rev. Immunol. 11, 85–97 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9–15 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Elangbam, C. S. Review paper: Current strategies in the development of anti-obesity drugs and their safety concerns. Vet. Pathol. 46, 10–24 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Schaffler, A., Scholmerich, J. & Salzberger, B. Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol. 28, 393–399 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Ahima, R. S. Central actions of adipocyte hormones. Trends Endocrinol. Metab. 16, 307–313 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Cooke, D. & Bloom, S. The obesity pipeline: Current strategies in the development of anti-obesity drugs. Nature Rev. Drug Discov. 5, 919–931 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Nawrocki, A. R. & Scherer, P. E. Keynote review: The adipocyte as a drug discovery target. Drug Discov. Today 10, 1219–1230 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Stenkula, K. G. et al. Human, but not rat, IRS1 targets to the plasma membrane in both human and rat adipocytes. Biochem. Biophys. Res. Commun. 363, 840–845 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Watanabe, M. et al. Regulation of PPAR gamma transcriptional activity in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 300, 429–436 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Cao, L. et al. Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nature Med. 15, 447–454 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Dhillon, H. et al. Central leptin gene therapy suppresses body weight gain, adiposity and serum insulin without affecting food consumption in normal rats: A long-term study. Regul. Pept. 99, 69–77 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Chen, G. et al. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc. Natl Acad. Sci. USA 93, 14795–14799 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Won, Y. W., Yoon, S. M., Lee, K. M. & Kim, Y. H. Poly(oligo-D-arginine) with internal disulfide linkages as a cytoplasm-sensitive carrier for siRNA delivery. Mol. Ther. 19, 372–380 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Won, Y. W., Kim, H. A., Lee, M. & Kim, Y. H. Reducible poly(oligo-D-arginine) for enhanced gene expression in mouse lung by intratracheal injection. Mol. Ther. 18, 734–742 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Wilson, D. S. et al. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nature Mater. 9, 923–928 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Mok, H., Lee, S. H., Park, J. W. & Park, T. G. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Mater. 9, 272–278 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Jeong, J. H., Kim, S. H., Christensen, L. V., Feijen, J. & Kim, S. W. Reducible poly(amido ethylenimine)-based gene delivery system for improved nucleus trafficking of plasmid DNA. Bioconjug. Chem. 21, 296–301 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Hyun, H. et al. Therapeutic effects of a reducible poly (oligo-D-arginine) carrier with the heme oxygenase-1 gene in the treatment of hypoxic-ischemic brain injury. Biomaterials 31, 9128–9134 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. Reversal of obesity by targeted ablation of adipose tissue. Nature Med. 10, 625–632 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Mishra, S., Murphy, L. C., Nyomba, B. L. & Murphy, L. J. Prohibitin: A potential target for new therapeutics. Trends Mol. Med. 11, 192–197 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Patel, N. et al. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc. Natl Acad. Sci. USA 107, 2503–2508 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Sharma, A. & Qadri, A. Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc. Natl Acad. Sci. USA 101, 17492–17497 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Kim, T. I., Ou, M., Lee, M. & Kim, S. W. Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials 30, 658–664 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134, 577–586 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nature Rev. Drug Discov. 7, 489–503 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Wang, P. et al. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405–2417 (2004).

    CAS  Google Scholar 

  28. 28

    Veiseh, O. et al. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 32, 5717–5725 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Ter-Avetisyan, G. et al. Cell entry of arginine-rich peptides is independent of endocytosis. J. Biol. Chem. 284, 3370–3378 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Vazquez, E., Ferrer-Miralles, N. & Villaverde, A. Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov. Today 13, 1067–1074 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Uysal, K. T., Scheja, L., Wiesbrock, S. M., Bonner-Weir, S. & Hotamisligil, G. S. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology 141, 3388–3396 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Research Foundation of Korea (2013030789), the Brain Korea 21 plus program (22A20130011095), and the Korean Health Technology R&D project through the Ministry of Health & Welfare (HI13C-1938-010013). All the confocal microscopy and Cellvizio imaging experiments were carried out at Korea Basic Science Institute, Chuncheon Center, Chuncheon-city, Korea. We are sincerely grateful for their assistance in performing experiments and data analysis.

Author information

Affiliations

Authors

Contributions

Y-W.W., P.P.A. and Y-H.K. designed the experiments. P.P.A. and H.J.K. carried out in vitro experiments. Y-W.W., K.S.L., H.J.K. and P.P.A. carried out in vivo animal experiments. K.S.L. and J.K.K. contributed to immunoprecipitation, SDS–PAGE, western blotting, FACS assay and in vivo tissue imaging. Y-W.W., H.J.K., K.S.L., J.K.K., P.P.A., and Y-H.K. prepared the manuscript. Y-H.K. provided overall intellectual guidance and was the principal investigator of this group.

Corresponding author

Correspondence to Yong-Hee Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3718 kb)

Supplementary Information

Supplementary Movie S1 (MPG 3594 kb)

Supplementary Information

Supplementary Movie S2 (MPG 1538 kb)

Supplementary Information

Supplementary Movie S3 (MPG 2406 kb)

Supplementary Information

Supplementary Movie S4 (MPG 1314 kb)

Supplementary Information

Supplementary Movie S5 (MPG 518 kb)

Supplementary Information

Supplementary Movie S6 (MPG 3534 kb)

Supplementary Information

Supplementary Movie S7 (MPG 36 kb)

Supplementary Information

Supplementary Movie S8 (MPG 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Won, YW., Adhikary, P., Lim, K. et al. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nature Mater 13, 1157–1164 (2014). https://doi.org/10.1038/nmat4092

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing