Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image


Although the overall atomic structure of a nanoscale crystal is in principle accessible by modern transmission electron microscopy, the precise determination of its surface structure is an intricate problem. Here, we show that aberration-corrected transmission electron microscopy, combined with dedicated numerical evaluation procedures, allows the three-dimensional shape of a thin MgO crystal to be determined from only one single high-resolution image. The sensitivity of the reconstruction procedure is not only sufficient to reveal the surface morphology of the crystal with atomic resolution, but also to detect the presence of adsorbed impurity atoms. The single-image approach that we introduce offers important advantages for three-dimensional studies of radiation-sensitive crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Aberration-corrected high-resolution TEM image of an MgO crystal.
Figure 2: Comparison of experiment with simulation.
Figure 3: Determined 3D atomic arrangement and displacements of atoms.
Figure 4: Perspective view of the top and bottom surface layers reproduced from the 3D structure of Fig. 3a.


  1. 1

    Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1–29 (2000).

    CAS  Google Scholar 

  2. 2

    Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Greenley, J. P. Active site of an industrial catalyst. Science 336, 810–811 (2012).

    Article  Google Scholar 

  4. 4

    Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Urban, K. Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Erdman, N. et al. The structure and chemistry of the TiO2-rich surface of SrTiO3 (001). Nature 419, 55–58 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Jinschek, J. R., Kisielowski, C., Van Dyck, D. & Geuens, P. Measurement of The Indium Segregation in InGaN Based LEDs with Single Atom Sensitivity Vol. 5187, 54–64 (Proc. SPIE, 2003).

    Google Scholar 

  8. 8

    Wang, A., Chen, F. R., Van Aert, S. & Van Dyck, D. Direct structure inversion from exit waves. Part I: Theory and simulation. Ultramicroscopy 110, 527–534 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Wang, A., Chen, F. R., Van Aert, S. & Van Dyck, D. Direct structure inversion from exit waves. Part II: A practical example. Ultramicroscopy 116, 77–85 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Jia, C. L., Thust, A. & Urban, K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Houben, L., Thust, A. & Urban, K. Atomic-precision determination of the reconstruction of a 90° tilt boundary in YBa2Cu3O7−δ by aberration corrected HRTEM. Ultramicroscopy 106, 200–214 (2006).

    CAS  Article  Google Scholar 

  12. 12

    LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Standardless atom counting in scanning transmission electron microscopy. Nano Lett. 10, 4405–4408 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Van Aert, S. et al. Procedure to count atoms with trustworthy single-atom sensitivity. Phys. Rev. B 87, 064107 (2013).

    Article  Google Scholar 

  14. 14

    Hwang, J. et al. Three-dimensional imaging of individual dopant atoms in SrTiO3 . Phys. Rev. Lett. 111, 266101 (2013).

    Article  Google Scholar 

  15. 15

    Ishikawa, R. et al. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy. Nano Lett. 14, 1903–1908 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Linck, M., Freitag, B., Kujawa, S., Lehmann, M. & Niermann, T. State of the art in atomic resolution off-axis electron holography. Ultramicroscopy 116, 13–23 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Van Aert, S. et al. Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374–377 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Chen, C-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Wang, A., Van Aert, S., Goos, P. & Van Dyck, D. Precision of three-dimensional atomic scale measurements from HRTEM images: What are the limits? Ultramicroscopy 114, 20–30 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Bals, S., Van Aert, S. & Van Tendeloo, G. High resolution electron tomography. Curr. Opin. Solid State Mater. Sci. 17, 107–114 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Bar Sadan, M. et al. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891–896 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Barthel, J. & Thust, A. Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns. Ultramicroscopy 111, 27–46 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Barthel, J. & Thust, A. On the optical stability of high-resolution transmission electron microscopes. Ultramicroscopy 134, 6–17 (2013).

    CAS  Article  Google Scholar 

  25. 25

    US National Research Council, Condensed Matter and Materials Physics (National Academy Press, 1999).

    Google Scholar 

  26. 26

    Klein, M. J. & Gager, W. B. Generation of vacancies in MgO by deformation. J. Appl. Phys. 37, 4112–4116 (1966).

    CAS  Article  Google Scholar 

  27. 27

    Mizuno, M., Araki, H., Shirai, Y., Oba, F. & Tanaka, I. Identification of Mg vacancy in MgO by positron lifetime measurements and first-principles calculations. Defect Diffusion Forum 242–244, 1–8 (2005).

    Article  Google Scholar 

  28. 28

    Spence, J. C. H. High-Resolution Electron Microscopy 3rd edn (Oxford Univ. Press, 2007).

    Google Scholar 

  29. 29

    Thust, A. High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 102, 220801 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Jia, C. L. et al. Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3 . Microsc. Microanal. 19, 310–318 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Jia, C. L., Houben, L., Thust, A. & Barthel, J. On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110, 500–505 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Urban, K. Is science prepared for atomic-resolution electron microscopy? Nature Mater. 8, 260–262 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Barthel, J. & Thust, A. Quantification of the information limit of transmission electron microscopes. Phys. Rev. Lett. 101, 200801 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Tsong, I. S. T. et al. Carbon on surfaces of magnesium and olivine single crystals Diffusion from the bulk or surface oxide contamination? Phys. Chem. Miner. 12, 261–270 (1985).

    CAS  Article  Google Scholar 

  36. 36

    Zemlin, F., Weiss, K., Schiske, P., Kunath, W. & Herrmann, K-H. Coma-free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy 3, 49–60 (1978).

    Article  Google Scholar 

  37. 37

    Houben, L. iMtools Electron Microscope Image Processing Software (Forschungszentrum Jülich, 2014);

    Google Scholar 

  38. 38

    O’Keefe, M. A. & Kilaas, R. Advances in high-resolution image simulation. Scanning Microsc. Suppl. 2, 225–244 (1988).

    Google Scholar 

  39. 39

    Barthel, J. Dr. Probe—High-Resolution (S)TEM Image Simulation Software (Forschungszentrum Jülich, 2014);

    Google Scholar 

Download references


We thank H. C. Du for preparation of the perspective views of the 3D crystal structure. C.L.J., S.B.M. and D.W.W. acknowledge support from the National Natural Science Foundation of China under Grant No. 51390472.

Author information




S.B.M. prepared the specimen and performed the experimental investigation. C.L.J. interpreted the experimental results using comparisons with image simulations and determined the 3D atomic structure of the specimen. J.B. and A.T. performed image simulations and the statistical confidence analysis. D.W.W. performed ab initio calculations. A.T., C.L.J., J.B. and K.W.U. wrote the manuscript. C.L.J. and R.E.D-B. supervised the research. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to C. L. Jia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3097 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Mi, S., Barthel, J. et al. Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nature Mater 13, 1044–1049 (2014).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing