Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

Subjects

Abstract

Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Lithium fraction within each particle of an electrode charged to 50% SoC at a rate of 5.0 C.
Figure 2: Active particle fraction as a function of cycling condition.
Figure 3: Schematic of the combined porous electrode and phase-field model.
Figure 4: Results from combined phase-field and porous electrode simulations of LFP.
Figure 5: Simulated behaviour of a typical LFP particle.
Figure 6: Schematic representation of the proposed transformation-barrier-limited model against prevailing models.

References

  1. 1

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Google Scholar 

  2. 2

    Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium–graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993).

    CAS  Google Scholar 

  3. 3

    Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    CAS  Google Scholar 

  4. 4

    Tang, M., Carter, W. C. & Chiang, Y-M. Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: Examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40, 501–529 (2010).

    CAS  Google Scholar 

  5. 5

    Ohzuku, T., Ueda, A. & Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431–1435 (1995).

    CAS  Google Scholar 

  6. 6

    Ariyoshi, K., Iwakoshi, Y., Nakayama, N. & Ohzuku, T. Topotactic two-phase reactions of Li[Ni1/2Mn3/2]O4(P4332) in nonaqueous lithium cells. J. Electrochem. Soc. 151, A296–A303 (2004).

    CAS  Google Scholar 

  7. 7

    Woodford, W. H., Chiang, Y-M. & Carter, W. C. “Electrochemical shock” of intercalation electrodes: A fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010).

    CAS  Google Scholar 

  8. 8

    Christensen, J. & Newman, J. Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006).

    CAS  Google Scholar 

  9. 9

    Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    CAS  Google Scholar 

  10. 10

    Meethong, N., Huang, H-Y. S., Carter, W. C. & Chiang, Y-M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Solid-State Lett. 10, A134–A138 (2007).

    CAS  Google Scholar 

  11. 11

    Wagemaker, M. et al. Dynamic solubility limits in nanosized olivine LiFePO4 . J. Am. Chem. Soc. 133, 10222–10228 (2011).

    CAS  Google Scholar 

  12. 12

    Malik, R., Abdellahi, A. & Ceder, G. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160, A3179–A3197 (2013).

    CAS  Google Scholar 

  13. 13

    Delmas, C., Maccario, M., Croguennec, L., Le Cras, F. & Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater. 7, 665–671 (2008).

    CAS  Google Scholar 

  14. 14

    Brunetti, G. et al. Confirmation of the domino-cascade model by LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515–4524 (2011).

    CAS  Google Scholar 

  15. 15

    Sugar, J. D. et al. High-resolution chemical analysis on cycled LiFePO4 battery electrodes using energy-filtered transmission electron microscopy. J. Power Sources 246, 512–521 (2014).

    CAS  Google Scholar 

  16. 16

    Chueh, W. C. et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–872 (2013).

    CAS  Google Scholar 

  17. 17

    Dreyer, W. et al. The thermodynamic origin of hysteresis in insertion batteries. Nature Mater. 9, 448–453 (2010).

    CAS  Google Scholar 

  18. 18

    Laffont, L. et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006).

    CAS  Google Scholar 

  19. 19

    Badi, S-P. et al. Direct synthesis of nanocrystalline Li0.90FePO4: Observation of phase segregation of anti-site defects on delithiation. J. Mater. Chem. 21, 10085–10093 (2011).

    CAS  Google Scholar 

  20. 20

    Ferguson, T. R. & Bazant, M. Z. Phase transformation dynamics in porous battery electrodes. Electrochim. Acta (in the press)

  21. 21

    Srinivasan, V. & Newman, J. Discharge model for the lithium iron–phosphate electrode. J. Electrochem. Soc. 151, A1517–A1529 (2004).

    CAS  Google Scholar 

  22. 22

    Yu, D. Y. W., Donoue, K., Inoue, T., Fujimoto, M. & Fujitani, S. Effect of electrode parameters on LiFePO4 cathodes. J. Electrochem. Soc. 153, A835–A839 (2006).

    CAS  Google Scholar 

  23. 23

    Dargaville, S. & Farrell, T. W. Predicting active material utilization in LiFePO4 electrodes using a multiscale mathematical model. J. Electrochem. Soc. 157, A830–A840 (2010).

    CAS  Google Scholar 

  24. 24

    Prada, E. et al. Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications. J. Electrochem. Soc. 159, A1508–A1519 (2012).

    CAS  Google Scholar 

  25. 25

    Ferguson, T. R. & Bazant, M. Z. Nonequilibrium thermodynamics of porous electrodes. J. Electrochem. Soc. 159, A1967–A1985 (2012).

    CAS  Google Scholar 

  26. 26

    Bai, P. & Tian, G. Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes. Electrochim. Acta 89, 644–651 (2013).

    CAS  Google Scholar 

  27. 27

    Levi, M. D. et al. Collective phase transition dynamics in microarray composite LixFePO4 electrodes tracked by in situ electrochemical quartz crystal admittance. J. Phys. Chem. C 117, 15505–15514 (2013).

    CAS  Google Scholar 

  28. 28

    Bai, P. & Bazant, M. Z. Charge transfer kinetics at the solid–solid interface in porous electrodes. Nature Commun. 5, 517–557 (2014).

    Google Scholar 

  29. 29

    Orvananos, B. et al. Architecture dependence on the dynamics of nano-LiFePO4 electrodes. Electrochim. Acta 137, 245–257 (2014).

    CAS  Google Scholar 

  30. 30

    Zhang, X. et al. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4 . Nano Lett. 14, 2279–2285 (2014).

    CAS  Google Scholar 

  31. 31

    Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1252817 (2014).

    Google Scholar 

  32. 32

    Newman, J. & Thomas-Alyea, K. E. Electrochemical Systems 517–577 (Wiley, 2004).

    Google Scholar 

  33. 33

    Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. Acc. Chem. Res. 46, 1144–1160 (2013).

    CAS  Google Scholar 

  34. 34

    Bluhm, H. et al. Soft X-ray microscopy and spectroscopy at the molecular environmental science beamline at the advanced light source. J. Electron Spectrosc. Relat. Phenom. 150, 86–104 (2006).

    CAS  Google Scholar 

  35. 35

    Kilcoyne, A.L.D. et al. Interferometer-controlled scanning transmission X-ray microscopes at the advanced light source. J. Synchrotron Radiat. 10, 125–136 (2003).

    CAS  Google Scholar 

  36. 36

    Kilcoyne, D. et al. in 10th Int. Conf. Synchrotron Radiat. Instrum. (eds Garrett, R., Gentle, I., Nugent, K. & Wilkins, S.) 465–468 (American Institute of Physics, 2010).

    Google Scholar 

  37. 37

    Liu, X. et al. Phase transformation and lithiation effect on electronic structure of LixFePO4: An in-depth study by soft X-ray and simulations. J. Am. Chem. Soc. 134, 13708–13715 (2012).

    CAS  Google Scholar 

  38. 38

    Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    CAS  Google Scholar 

  39. 39

    Gibot, P. et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4 . Nature Mater. 7, 741–747 (2008).

    CAS  Google Scholar 

  40. 40

    Bai, P., Cogswell, D. A. & Bazant, M. Z. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11, 4890–4896 (2011).

    CAS  Google Scholar 

  41. 41

    Malik, R., Zhou, F. & Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4 . Nature Mater. 10, 587–590 (2011).

    CAS  Google Scholar 

  42. 42

    Yu, X. et al. High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem. Commun. 48, 11537–11539 (2012).

    CAS  Google Scholar 

  43. 43

    Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).

    CAS  Google Scholar 

  44. 44

    Allen, S. M. & Cahn, J. W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979).

    CAS  Google Scholar 

  45. 45

    Cogswell, D. A. & Bazant, M. Z. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6, 2215–2225 (2012).

    CAS  Google Scholar 

  46. 46

    Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7, A30–A32 (2004).

    CAS  Google Scholar 

  47. 47

    Srinivasan, V. & Newman, J. Existence of path-dependence in the LiFePO4 electrode. Electrochem. Solid-State Lett. 9, A110–A114 (2006).

    CAS  Google Scholar 

  48. 48

    Orvananos, B., Ferguson, T. R., Yu, H-C., Bazant, M. Z. & Thornton, K. Particle-level modeling of the charge-discharge behavior of nanoparticulate phase-separating Li-ion battery electrodes. J. Electrochem. Soc. 161, A535–A546 (2014).

    CAS  Google Scholar 

  49. 49

    Gaberscek, M., Küzma, M. & Jamnik, J. Electrochemical kinetics of porous, carbon-decorated LiFePO4 cathodes: Separation of wiring effects from solid state diffusion. Phys. Chem. Chem. Phys. 9, 1815–1820 (2007).

    CAS  Google Scholar 

  50. 50

    Meethong, N., Huang, H-Y. S., Speakman, S. A., Carter, W. C. & Chiang, Y-M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    CAS  Google Scholar 

  51. 51

    Omenya, F. et al. Why substitution enhances the reactivity of LiFePO4 . Chem. Mater. 25, 85–89 (2013).

    CAS  Google Scholar 

  52. 52

    Ravnsbæk, D. B. et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491 (2014).

    Google Scholar 

  53. 53

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Google Scholar 

  54. 54

    Park, K. et al. Enhanced charge-transfer kinetics by anion surface modification of LiFePO4 . Chem. Mater. 24, 3212–3218 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

The research at Stanford was supported by the Samsung Advanced Institute of Technology Global Research Outreach Program, and by startup funding from Stanford School of Engineering and Precourt Institute for Energy. Support for the research at MIT was provided by the Samsung-MIT Program for Materials Design in Energy Applications. F.E.G. and N.C.B. were supported by the Office of Basic Energy Sciences, Division of Materials and Engineering Sciences, US Department of Energy, under contract DE-AC04-94AL85000. J.D.S. and K.R.F. were supported by US Department of Energy through the Sandia Laboratory Directed Research and Development program under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Beam line 5.3.2.1 at the Advanced Light Source was funded through a donation by the King Abdullah University of Science and Technology. Y.L. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. We acknowledge M. Homer of Sandia and J. Perrino of Stanford for ultramicrotoming. We thank J. Nelson Weker of the Stanford Synchrotron Radiation Lightsource for insightful discussions.

Author information

Affiliations

Authors

Contributions

W.C.C., F.E.G. and Y.L. conceived the experiments. K.R.F. and F.E.G. prepared the LFP samples for imaging. Y.L., T.T. and A.L.D.K. performed the SoC imaging. J.D.S. and Y.L. performed the TEM imaging. Y.L. analysed the active particle population from the images. T.R.F., R.B.S., D.A.C. and M.Z.B. conceived and created the phase-field porous electrode model. W.C.C. and M.Z.B. supervised the project. All authors participated in writing the manuscript.

Corresponding author

Correspondence to William C. Chueh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1957 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., El Gabaly, F., Ferguson, T. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nature Mater 13, 1149–1156 (2014). https://doi.org/10.1038/nmat4084

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing