Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large reverse saturable absorption under weak continuous incoherent light



In materials showing reverse saturable absorption (RSA), the optical absorbance increases as the power of the light incident on them increases. To date, RSA has only been observed when very intense light sources, such as short-pulse lasers, are used. Here, we show that hydroxyl steroidal matrices embedding properly designed aromatic molecules as acceptors and transition-metal complexes as donors exhibit high RSA on exposure to weak incoherent light at room temperature and in air. Accumulation by photosensitization of long-lived room-temperature triplet excitons in acceptors with a large triplet–triplet absorption coefficient allows a nonlinear increase in absorbance also under low-power irradiation conditions. As a consequence, continuous exposure to weak light significantly decreases the transmittance of thin films fabricated with these compounds. These optical limiting properties may be used to protect eyes and light sensors from exposure to intense radiation generated by incoherent sources and for other light-absorption applications that have not been realized with conventional RSA materials.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of materials showing RSA with weak continuous incoherent light and absorption characteristics of the material.
Figure 2: Schematic illustrations showing the photophysical processes of the materials and RSA with weak incoherent irradiance.
Figure 3: Optical characteristics of donors and acceptors.
Figure 4: RSA and OL properties of the samples.
Figure 5: Saturation of the RSA and the OL characteristics under high irradiance.


  1. Nalwa, H. S. & Miyata, S. Nonlinear Optics of Organic Molecules and Polymers (CRC Press, 1997).

    Book  Google Scholar 

  2. Mansour, K., Soileau, M. J. & Van Stryland, E. W. Nonlinear optical properties of carbon-black suspension (ink). J. Opt. Soc. Am. B 9, 1100–1109 (1992).

    CAS  Article  Google Scholar 

  3. Nashold, K. M. & Walter, D. P. Investigation of optical limiting mechanism in carbon particle suspensions and fullerene solutions. J. Opt. Soc. Am. B 12, 1228–1237 (1995).

    CAS  Article  Google Scholar 

  4. Tutt, L. W. & Kost, A. Optical limiting performance of C60 and C70 solutions. Nature 356, 225–226 (1992).

    CAS  Article  Google Scholar 

  5. Chi, S-H. et al. Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared. Opt. Express 17, 22062–22072 (2009).

    CAS  Article  Google Scholar 

  6. Perry, J. W. et al. Organic optical limiter with a strong nonlinear absorptive response. Science 273, 1533–1536 (1996).

    CAS  Article  Google Scholar 

  7. Perry, J. W. et al. Enhanced reversible saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines. Opt. Lett. 19, 625–627 (1994).

    CAS  Article  Google Scholar 

  8. De la Torre, G., Vazquez, P., Agullo-Lopez, F. & Torres, T. Role of structural factors in the nonlinear optical properties of phthalocyanines and related compounds. Chem. Rev. 104, 3723–3750 (2004).

    CAS  Article  Google Scholar 

  9. Tang, B. Z. & Xu, H. Preparation, alignment, and optical properties of soluble poly(phenylacetylene)-wrapped carbon nanotubes. Macromolecules 32, 2569–2576 (1999).

    CAS  Article  Google Scholar 

  10. Chen, P. et al. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 82, 2548–2551 (1999).

    CAS  Article  Google Scholar 

  11. Vivien, L. et al. Single-wall carbon nanotubes for optical limiting. Chem. Phys. Lett. 307, 317–319 (1999).

    CAS  Article  Google Scholar 

  12. Riggs, J. E., Walker, D. B., Carroll, D. L. & Sun, Y. P. Optical limiting properties of suspended and solubilized carbon nanotubes. J. Phys. Chem. B 104, 7071–7076 (2000).

    CAS  Article  Google Scholar 

  13. Sun, X., Yu, R. Q., Xu, G. Q., Hor, T. S. A. & Jia, W. Broadband optical limiting with multiwalled carbon nanotubes. Appl. Phys. Lett. 73, 3632–3634 (1998).

    CAS  Article  Google Scholar 

  14. McEwan, K. et al. Synthesis, characterization, and nonlinear optical study of metalloporphyrins. Adv. Funct. Mater. 13, 863–867 (2003).

    CAS  Article  Google Scholar 

  15. Senge, M. O. et al. Nonlinear optical properties of porphyrins. Adv. Mater. 19, 2737–2774 (2007).

    CAS  Article  Google Scholar 

  16. Hales, J. M., Cozzuol, M., Screen, T. E. O., Anderson, H. L. & Perry, J. W. Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical limiting in the near infrared. Opt. Express 17, 18478–18488 (2009).

    CAS  Article  Google Scholar 

  17. Vijaya, R., Murti, Y. V. G. S., Vijayaraj, T. A. & Sundararajan, G. Optical nonlinearities in substituted conjugated polymers. Opt. Quant. Electron. 25, 723–731 (1993).

    CAS  Article  Google Scholar 

  18. Zhou, G-J., Wong, W-Y., Dongmei, C. & Cheng, Y. Large optical-limiting response in some solution-processable polyplatinaynes. Chem. Mater. 17, 5209–5217 (2005).

    CAS  Article  Google Scholar 

  19. Francois, L. et al. Optical limitation induced by gold clusters. Size effect. J. Phys. Chem. B 104, 6133–6137 (2000).

    CAS  Article  Google Scholar 

  20. Sun, Y. P., Riggs, J. E., Rollins, H. W. & Guduru, R. Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions. J. Phys. Chem. B 103, 77–82 (1999).

    CAS  Article  Google Scholar 

  21. Jia, W. F., Douglas, E. P., Guo, F. G. & Sun, W. F. Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Appl. Phys. Lett. 85, 6326–6328 (2004).

    CAS  Article  Google Scholar 

  22. Venkatram, N., Rao, D. N. & Akundi, M. A. Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Opt. Express 13, 867–872 (2005).

    CAS  Article  Google Scholar 

  23. Pan, H., Chen, W. Z., Feng, Y. P., Ji, W. & Lin, J. Y. Optical limiting properties of metal nanowires. Appl. Phys. Lett. 88, 223106 (2006).

    Article  Google Scholar 

  24. Zhou, G-J., Wong, W-Y., Lin, Z. & Ye, C. White metallopolyynes for optical limiting/transparency trade-off optimization. Angew. Chem. Int. Ed. 45, 6189–6193 (2006).

    CAS  Article  Google Scholar 

  25. Zhou, G-J., Wong, W-Y., Poon,, Ye, C. & Lin, Z. Optical power limiters based on colorless di-, oligo-, and polymetallaynes: Highly transparent materials for eye protection devices. Adv. Funct. Mater. 17, 963–975 (2007).

    Article  Google Scholar 

  26. Zhou, G-J., Wong, W-Y., Poon, S-Y., Ye, C. & Lin, Z. Symmetric versus unsymmetric platinum (II) bis(aryleneethynylene)s with distinct electronic structures for optical power limiting/optical transparency trade-off optimization. Adv. Funct. Mater. 19, 531–544 (2009).

    CAS  Article  Google Scholar 

  27. Zhou, G-J. & Wong, W-Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials. Chem. Soc. Rev. 40, 2541–2566 (2011).

    CAS  Article  Google Scholar 

  28. Xu, Y. et al. A Graphene hydrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009).

    CAS  Article  Google Scholar 

  29. Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broad nonlinear optical response of graphene dispersions. Adv. Mater. 21, 2430–2435 (2009).

    CAS  Article  Google Scholar 

  30. Zhao, B., Cao, B., Zhou, D., Li, D. & Zhao, W. Nonlinear optical transmission of nanographene and its composites. J. Phys. Chem. C 114, 12517–12523 (2010).

    CAS  Article  Google Scholar 

  31. Feng, M., Zhan, H. & Chen, Y. Nonlinear optical and optical limiting properties of graphene families. Appl. Phys. Lett. 96, 033107 (2010).

    Article  Google Scholar 

  32. Lim, G-K. et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photon. 5, 554–560 (2011).

    CAS  Article  Google Scholar 

  33. Xu, X. et al. Water-soluble graphene sheets with large optical limiting response via non-covalent functionalization with polyacetylenes. J. Mater. Chem. 22, 22624–22630 (2012).

    CAS  Article  Google Scholar 

  34. Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).

    CAS  Article  Google Scholar 

  35. Hirata, S. et al. Reversible thermal recording media using time-dependent persistent room temperature phosphorescence. Adv. Opt. Mater. 1, 483–488 (2013).

    Google Scholar 

  36. Endo, A. et al. Measurement of phosphorescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state films. Chem. Phys. Lett. 460, 155–157 (2008).

    CAS  Article  Google Scholar 

  37. Bensasson, R. & Land, J. E. Triplet–triplet extinction coefficients via energy transfer. Trans. Faraday Soc. 67, 1904–1915 (1971).

    CAS  Article  Google Scholar 

  38. Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet–triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).

    CAS  Article  Google Scholar 

  39. Tanaka, I. & Tokito, S. Phosphorescent-sensitized triplet–triplet annihilation in tris(8-hydroxyquinoline) aluminum. J. Appl. Phys. 97, 113532 (2005).

    Article  Google Scholar 

  40. Kawamura, Y., Brooks, J., Brown, J. J., Sasabe, H. & Adachi, C. Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film. Phys. Rev. Lett. 96, 017404 (2006).

    Article  Google Scholar 

  41. Burrows, H. D., Fernandes, M., Melo, J. S., Monkman, A. P. & Navaratnam, S. Characterization of the triplet state of tris(8-hydroxyquinoline) aluminium(iii) in benzene solution. J. Am. Chem. Soc. 125, 15310–15311 (2003).

    CAS  Article  Google Scholar 

Download references


This work was supported by a Grant-in-Aid for Young Scientists (B) (22750132), a Grant-in-Aid for Young Scientists (A) (26708010), a Grant-in-aid from the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), a Japan Association for Chemical Innovation grant, a Japan Bioindustry Association grant, a Tokyo Tech Engineering Grant for New Assistant Professors, the Cosmetology Research Foundation, a grant for Basic Science Research Projects from the Sumitomo Foundation, and the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (AS231Z01236B).

Author information

Authors and Affiliations



S.H. proposed the concept of a reverse saturable absorber using accumulation of long-lived room-temperature triplet excitons and designed the materials. S.H. measured device characteristics and collected data. K.T. helped with absorption measurements and T.Y. helped with transient absorption measurements. S.H. performed analyses. S.H., C.A. and M.V. wrote the manuscript. All authors discussed the progress of research and reviewed the manuscript.

Corresponding authors

Correspondence to Shuzo Hirata or Martin Vacha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4720 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirata, S., Totani, K., Yamashita, T. et al. Large reverse saturable absorption under weak continuous incoherent light. Nature Mater 13, 938–946 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing