Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topologically protected excitons in porphyrin thin films

Abstract

The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov–Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Porphyrin lattice under a uniform magnetic field.
Figure 2: Porphyrin under a magnetic field.
Figure 3: Phase diagram of exciton topological phases.
Figure 4: Eigenstates of the lower energy Hamiltonian for porphyrin tilting angles (θa, φa) = (− π/3,0) and(θb, φb) = (0, π/3) and magnetic field Bz > 0.

References

  1. Davydov, A. Theory of Molecular Excitons (McGraw-Hill, 1962).

    Google Scholar 

  2. Gregg, B. A. Excitonic solar cells. J. Phys. Chem. B 107, 4688–4698 (2003).

    Article  CAS  Google Scholar 

  3. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  4. Saikin, S. K., Eisfeld, A., Valleau, S. & Aspuru-Guzik, A. Photonics meets excitonics: Natural and artificial molecular aggregates. Nanophotonics 2, 21–38 (2013).

    Article  CAS  Google Scholar 

  5. Kippelen, B. & Bredas, J-L. Organic photovoltaics. Energy Environ. Sci. 2, 251–261 (2009).

    Article  CAS  Google Scholar 

  6. Fidder, H., Knoester, J. & Wiersma, D. A. Optical properties of disordered molecular aggregates: A numerical study. J. Chem. Phys. 95, 7880–7890 (1991).

    Article  CAS  Google Scholar 

  7. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

    Article  Google Scholar 

  8. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: Quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  Google Scholar 

  9. Cao, J. & Silbey, R. J. Optimization of exciton trapping in energy transfer processes. J. Phys. Chem. A 113, 13825–13838 (2009).

    Article  CAS  Google Scholar 

  10. Yoshioka, D. The Quantum Hall Effect (Springer, 1998).

    Google Scholar 

  11. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  Google Scholar 

  12. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  13. Rechtsman, M. C. et al. Photonic floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  14. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001–1005 (2013).

    Article  CAS  Google Scholar 

  15. Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233–239 (2013).

    Article  CAS  Google Scholar 

  16. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  17. Qi, X. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  18. Wang, Z. F., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 13, 2842–2845 (2013).

    Article  CAS  Google Scholar 

  19. Wang, Z. F., Liu, Z. & Liu, F. Organic topological insulators in organometallic lattices. Nature Commun. 4, 1471 (2013).

    Article  CAS  Google Scholar 

  20. Liu, Z., Wang, Z. F., Mei, J. W., Wu, Y. S. & Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 110, 106804 (2013).

    Article  Google Scholar 

  21. Wang, Z. F., Liu, Z. & Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 110, 196801 (2013).

    Article  CAS  Google Scholar 

  22. Kim, D. (ed.) Multiporphyrin Arrays: Fundamentals and Applications (Pan Stanford, 2012).

  23. Martinez-Diaz, M. V., de la Torre, G. & Torres, T. Lighting porphyrins and phthalocyanines for molecular photovoltaics. Chem. Commun. 46, 7090–7108 (2010).

    Article  CAS  Google Scholar 

  24. Suto, K., Yoshimoto, S. & Itaya, K. Two-dimensional self-organization of phthalocyanine and porphyrin: Dependence on the crystallographic orientation of Au. J. Am. Chem. Soc. 125, 14976–14977 (2003).

    Article  CAS  Google Scholar 

  25. Barrena, E., de Oteyza, D. G., Dosch, H. & Wakayama, Y. 2D supramolecular self-assembly of binary organic monolayers. ChemPhysChem 8, 1915–1918 (2007).

    Article  CAS  Google Scholar 

  26. Brede, J. et al. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates. Nanotechnology 20, 275602 (2009).

    Article  Google Scholar 

  27. Gao, A. et al. Two-dimensional self-assembly of a porphyrin–polypyridyl ruthenium(II) hybrid on HOPG surface through metal–ligand interactions. ChemPhysChem 11, 1951–1955 (2010).

    CAS  Google Scholar 

  28. Birnbaum, T. et al. Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J. Phys. Condens. Matter. 26, 104201 (2014).

    Article  Google Scholar 

  29. Feyer, V. et al. Adsorption geometry and electronic structure of iron phthalocyanine on Ag surfaces: A LEED and photoelectron momentum mapping study. Surf. Sci. 621, 64–68 (2014).

    Article  CAS  Google Scholar 

  30. Maier, S. et al. Nanoscale engineering of molecular porphyrin wires on insulating surfaces. Small 4, 1115–1118 (2008).

    Article  CAS  Google Scholar 

  31. Scarfato, A. et al. Scanning tunneling microscope study of iron(II) phthalocyanine growth on metals and insulating surfaces. Surf. Sci. 602, 677–683 (2008).

    Article  CAS  Google Scholar 

  32. Malley, M., Feher, G. & Mauzerall, D. The Zeeman effect in porphyrins. J. Mol. Spectrosc. 26, 320–334 (1968).

    Article  CAS  Google Scholar 

  33. Villamaina, D., Bhosale, S. V., Langford, S. J. & Vauthey, E. Excited-state dynamics of porphyrin–naphthalenediimide–porphyrin triads. Phys. Chem. Chem. Phys. 15, 1177–1187 (2013).

    Article  CAS  Google Scholar 

  34. Canters, C. G. & van der Waals, J. H. in The Porphyrins (ed Dolphin, D.) 531–582 Vol. 3, Ch. 12, (Academic, 1978).

    Book  Google Scholar 

  35. Rodriguez, J. J. & Mukamel, S. Zeeman shift of two-dimensional optical signals of Mg-porphyrin dimers with circularly polarized beams. J. Chem. Phys. 137, 205102 (2012).

    Article  Google Scholar 

  36. in Handbook of Porphyrin Science (eds Kadish, K. M., Smith, K. M. & Guilard, R.) (World Scientific, 2010).

  37. Yao, N. Y. et al. Topological flat bands from dipolar spin systems. Phys. Rev. Lett. 109, 266804 (2012).

    Article  CAS  Google Scholar 

  38. Yao, N. Y. et al. Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

    Article  CAS  Google Scholar 

  39. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Google Scholar 

  40. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  CAS  Google Scholar 

  41. Knoester, J. Modeling the optical properties of excitons in linear and tubular J-aggregates. Int. J. Photoenergy 2006, 61364 (2006).

    Google Scholar 

  42. Sánchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999).

    Article  Google Scholar 

  43. Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nature Commun. 5, 3646 (2014).

    Article  CAS  Google Scholar 

  44. Sheberla, D. et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014).

    Article  CAS  Google Scholar 

  45. Zimborás, Z. et al. Quantum transport enhancement by time-reversal symmetry breaking. Sci. Rep. 3, 2361 (2013).

    Article  Google Scholar 

  46. Lu, D. et al. Chiral quantum walks. Preprint http://arxiv-org/abs/1405.6209 (2014)

  47. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  Google Scholar 

  48. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nature Commun. 3, 982 (2012).

    Article  Google Scholar 

  49. Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  50. Feng, J., Qian, X., Huang, C-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon. 6, 866–872 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.Y-Z. is grateful to B. Halperin, I. Kassal, and X. Andrade for discussions, and to O. Starykh for kindly sharing his notes on the subject. All the authors would like to thank C. Laumann for discussions at the early stages of the project. J.Y-Z. and A.A-G. are supported by an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001088. N.Y. acknowledges support from the Department of Energy (FG02-97ER25308). Finally, S.K.S. and A.A-G. are supported by the Defense Threat Reduction Agency grant HDTRA1-10-1-0046.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the results presented in this Article.

Corresponding author

Correspondence to Joel Yuen-Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen-Zhou, J., Saikin, S., Yao, N. et al. Topologically protected excitons in porphyrin thin films. Nature Mater 13, 1026–1032 (2014). https://doi.org/10.1038/nmat4073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing