Electric control of the spin Hall effect by intervalley transitions

Abstract

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength—quantified in terms of the SHE angle—is ultimately fixed by the magnitude of the spin–orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by means of an electrical intervalley transition induced in the conduction band. The spin Hall angle was determined by measuring an electromotive force driven by photoexcited spin-polarized electrons drifting through GaAs Hall bars. By controlling electron populations in different (Γ and L) valleys, we manipulated the angle from 0.0005 to 0.02. This change by a factor of 40 is unprecedented in GaAs and the highest value achieved is comparable to that of the heavy metal Pt.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematics of optically induced intervalley SHE.
Figure 2: Electric field dependence of the longitudinal carrier transport and optically induced SHE voltages.
Figure 3: Electric field dependence of Hanle effect measurement and spin polarization P in the Si-doped GaAs.
Figure 4: Evolution of the spin Hall angle θSH in the intervalley electron transition.
Figure 5: Transport and optically induced SHE voltage measurements for an undoped GaAs.

References

  1. 1

    Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    CAS  Article  Google Scholar 

  2. 2

    Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  4. 4

    Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–470 (1971).

    Google Scholar 

  5. 5

    Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Sinova, J. et al. Universal intrinsic spin-Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  Google Scholar 

  7. 7

    Murakami, S., Nagaosa, N. & Zhang, S-C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Jungwirth, T., Wunderlich, J. & Olejnik, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  11. 11

    Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Ando, K. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nature Mater. 10, 655–659 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Matsuzaka, S., Ohno, Y. & Ohno, H. Electron density dependence of the spin Hall effect in GaAs probed by scanning Kerr rotation microscopy. Phys. Rev. B 80, 241305 (2009).

    Article  Google Scholar 

  14. 14

    Garlid, E. S., Hu, Q. O., Chan, M. K., Palmstrom, C. J. & Crowell, P. A. Electrical measurement of the direct spin Hall effect in Fe/InxGa1−xAs heterostructures. Phys. Rev. Lett. 105, 156602 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Liu, L., Buhrman, R. A. & Ralph, D. C. Review and analysis of measurements of the spin Hall effect in platinum. Preprint at http://arXiv.org/abs/1111.3702 (2011)

  16. 16

    Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).

    Article  Google Scholar 

  17. 17

    Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Niimi, Y. et al. Extrinsic spin Hall effect induced by iridium impurities in copper. Phys. Rev. Lett. 106, 126601 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Niimi, Y. et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 156602 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Pai, C-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  Google Scholar 

  21. 21

    Gunn, J. B. Microwave oscillations of current in III–V semiconductors. Solid State Commun. 1, 88–91 (1963).

    Article  Google Scholar 

  22. 22

    Butcher, P. N. The Gunn effect. Rep. Prog. Phys. 30, 97–148 (1967).

    Article  Google Scholar 

  23. 23

    Meier, F. & Zakharchenya, B. P. Optical Orientation (North-Holland, 1984).

    Google Scholar 

  24. 24

    Miah, M. I. Observation of the anomalous Hall effect in GaAs. J. Phys. D 40, 1659–1663 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Wunderlich, J. et al. Spin-injection Hall effect in a planar photovoltaic cell. Nature Phys. 5, 675–681 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Wunderlich, J. et al. Spin Hall effect transistor. Science 330, 1801–1804 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Okamoto, N. et al. Spin current depolarization under high electric fields in undoped InGaAs. Appl. Phys. Lett. 98, 242104 (2011).

    Article  Google Scholar 

  28. 28

    Lei, X. L., Xing, D. Y., Liu, M., Ting, C. S. & Birman, J. L. Nonlinear electronic transport in semiconductor systems with two types of carriers: Application to GaAs. Phys. Rev. B 36, 9136–9141 (1987).

    Google Scholar 

  29. 29

    McCumber, D. E. & Chynoweth, A. G. Theory of negative-conductance amplification and of Gunn instabilities in ‘two-valley’ semiconductors. IEEE Trans. Electron Devices 13, 4–21 (1966).

    Article  Google Scholar 

  30. 30

    Moss, T. S. Optical absorption edge in GaAs and its dependence on electric field. J. Appl. Phys. 32, 2136–2139 (1961).

    CAS  Article  Google Scholar 

  31. 31

    Hubner, J. et al. Temperature-dependent electron Lande g factor and the interband matrix element of GaAs. Phys. Rev. B 79, 193307 (2009).

    Article  Google Scholar 

  32. 32

    Shen, K., Weng, M. Q. & Wu, M. W. L-valley electron g-factor in bulk GaAs and AlAs. J. Appl. Phys. 104, 063719 (2008).

    Article  Google Scholar 

  33. 33

    Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Jiang, J. H. & Wu, M. W. Electron-spin relaxation in bulk III–V semiconductors from a fully microscopic kinetic spin Bloch equation approach. Phys. Rev. B 79, 125206 (2009).

    Article  Google Scholar 

  35. 35

    Zhang, T. T. et al. L-valley electron spin dynamics in GaAs. Phys. Rev. B 87, 041201(R) (2013).

    Article  Google Scholar 

  36. 36

    Tong, H. & Wu, M. W. Multivalley spin relaxation in n-type bulk GaAs in the presence of high electric fields. Phys. Rev. B 85, 075203 (2012).

    Article  Google Scholar 

  37. 37

    Engel, H-A., Halperin, B. I. & Rashba, E. I. Theory of spin Hall conductivity in n-doped GaAs. Phys. Rev. Lett. 95, 166605 (2005).

    Article  Google Scholar 

  38. 38

    Qi, Y., Yu, Z-G. & Flatte, M. E. Spin Gunn effect. Phys. Rev. Lett. 96, 026602 (2006).

    Article  Google Scholar 

  39. 39

    Jancu, J-M., Scholz, R., Beltram, F. & Bassani, F. Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters. Phys. Rev. B 57, 6493–6507 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Sinitsyn, N. A., Hankiewicz, E. M., Teizer, W. & Sinova, J. Spin Hall and spin-diagonal conductivity in the presence of Rashba and Dresselhaus spin–orbit coupling. Phys. Rev. B 70, 081312(R) (2004).

    Article  Google Scholar 

  41. 41

    Sinova, J. & MacDonald, A. H. in Theory of Spin–Orbit Effects in Semiconductors (eds Dielt, T., Awschalom, D., Kaminska, M. & Ohno, H.) (Elsevier, 2008).

    Google Scholar 

  42. 42

    Geller, C. B. et al. Computational band-structure engineering of III–V semiconductor alloys. Appl. Phys. Lett. 79, 368–370 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Jain, A. et al. Crossover from spin accumulation into interface states to spin injection in the germanium conduction band. Phys. Rev. Lett. 109, 106603 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Rojas-Sanchez, J-C. et al. Spin pumping and inverse spin Hall effect in germanium. Phys. Rev. B 88, 064403 (2013).

    Article  Google Scholar 

  45. 45

    Baca, A. G., Ren, F., Zolper, J. C., Briggs, R. D. & Pearton, S. J. A survey of ohmic contacts to III–V compound semiconductors. Thin Solid Films 308, 599–606 (1997).

    Article  Google Scholar 

  46. 46

    Ando, K. & Saitoh, E. et al. Observation of the inverse spin Hall effect in silicon. Nature Commun. 3, 629 (2012).

    Article  Google Scholar 

  47. 47

    Casey, H. C., Sell, D. D. & Wecht, K. W. Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV. J. Appl. Phys. 46, 250–257 (1975).

    CAS  Article  Google Scholar 

  48. 48

    Sell, D. D., Casey, H. C. & Wecht, K. W. Concentration dependence of the refractive index for n- and p-type GaAs between 1.2 and 1.8 eV. J. Appl. Phys. 45, 2650–2657 (1974).

    CAS  Article  Google Scholar 

  49. 49

    Rogalla, M. et al. Carrier lifetime under low and high electric field conditions in semi-insulating GaAs. Nucl. Instrum. Methods Phys. Res. A 410, 74–78 (1998).

    CAS  Article  Google Scholar 

  50. 50

    Hilton, D. J. & Tang, C. L. Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. Phys. Rev. Lett. 89, 146601 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

N.O. would like to thank Funai Foundation for Information Technology, for the Overseas Scholarship. H.K. acknowledges support from the Japan Science and Technology Agency (JST). T.J. acknowledges support from the EU European Research Council (ERC) advanced grant no. 268066, from the Grant Agency of the Czech Republic grant no. 14-37427G, and from the Academy of Sciences of the Czech Republic Praemium Academiae. J.S. acknowledges support from US grants ONR-N000141110780, NSF-DMR-1105512 and from the Alexander Von Humboldt Foundation. This project is also supported by the EPSRC under Grant No. EP/J003638/1.

Author information

Affiliations

Authors

Contributions

N.O. designed the experimental set-up, and collected and analysed all of the data with support from H.K., T.T., E.S. and C.H.W.B.; I.F. and D.A.R. supplied the samples; J.S., J.M. and T.J. provided the theory calculations; H.K., N.O., J.S. and T.J. wrote the manuscript; all authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to N. Okamoto or H. Kurebayashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3386 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okamoto, N., Kurebayashi, H., Trypiniotis, T. et al. Electric control of the spin Hall effect by intervalley transitions. Nature Mater 13, 932–937 (2014). https://doi.org/10.1038/nmat4059

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing