Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes



Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: d.c. ionic conductivity of 1 M ((1 − y) LiTFSI + y LiX)–PC electrolytes with various LiF mole percentages (y × 100%) as a function of temperature.
Figure 2: Voltage versus time for a symmetric lithium cell where each half-cycle lasts 3 h.
Figure 3: Short-circuit time Tsc from galvanostatic polarization measurements for symmetric lithium cells.
Figure 4: Voltage profile at a fixed current density and impedance spectra of the three stages s1, s2 and s3 at 25 °C and 70 °C.
Figure 5: The morphology and distribution of LiF clusters on lithium foil by SEM and EDX.
Figure 6: Charge–discharge characteristics of Li/Li4Ti5O12 (Li/LTO) with 30 mol% LiF+LiTFSI/EC:DEC and LiTFSI/EC:DEC electrolytes at room temperature.


  1. 1

    Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Yang, P. & Tarascon, J-M. Towards systems materials engineering. Nature Mater. 11, 560–563 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Morcrette, M. et al. A reversible copper extrusion-insertion electrode for rechargeable Li batteries. Nature Mater. 2, 755–761 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  7. 7

    Whittingham, M. S. Materials challenges facing electrical energy storage. Mater. Res. Bull. 33, 411–419 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J-M. Li–O2 and Li–S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A. & Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Tarascon, J-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Mater. 9, 504–510 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Lu, Y., Korf, K., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: Applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Lu, Y., Das, S. K., Moganty, S. S. & Archer, L. A. Ionic liquid–nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 24, 4430–4435 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Tu, Z., Kambe, Y., Lu, Y. & Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014).

    Article  Google Scholar 

  15. 15

    Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Moganty, S. S. et al. Ionic liquid-tethered nanoparticle suspensions: A novel class of ionogels. Chem. Mater. 24, 1386–1392 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Moganty, S. S., Jayaprakash, N., Nugent, J. L., Shen, J. & Archer, L. A. Ionic-liquid-tethered nanoparticles: Hybrid electrolytes. Angew. Chem. Int. Ed. 49, 9158–9161 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Nugent, J. L., Moganty, S. S. & Archer, L. A. Nanoscale organic hybrid electrolytes. Adv. Mater. 22, 3677–3680 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Chazalviel, J-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990).

    CAS  Article  Google Scholar 

  24. 24

    Rosso, M., Gobron, T., Brissot, C., Chazalviel, J-N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97–98, 804–806 (2001).

    Article  Google Scholar 

  25. 25

    Brissot, C., Rosso, M., Chazalviel, J-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81–82, 925–929 (1999).

    Article  Google Scholar 

  26. 26

    De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979).

    CAS  Article  Google Scholar 

  27. 27

    Ansell, R. The chemical and electrochemical stability of beta-alumina. J. Mater. Sci. 21, 365–379 (1986).

    CAS  Article  Google Scholar 

  28. 28

    Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Ling, C., Banerjee, D. & Matsui, M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., Schwarz, K. A. & Arias, T. A. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Model. Simul. Mater. Sci. Eng. 21, 074005 (2013).

    Article  Google Scholar 

  31. 31

    Gunceler, D., Schwarz, K. A., Sundararaman, R., Letchworth-Weaver, K. & Arias, T. A. 16th International Workshop on Computation Physics and Materials Science: Total Energy and Force Methods (International Centre for Theoretical Physics, 2012).

    Google Scholar 

  32. 32

    Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/polyethylene oxide electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Jones, J., Anouti, M., Caillon-Caravanier, M., Willmann, P. & Lemordant, D. Lithium fluoride dissolution equilibria in cyclic alkylcarbonates and water. J. Mol. Liq. 153, 146–152 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Ensling, D., Stjerndahl, M., Nyt’en, A., Gustafsson, T. & Thomas, J. O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Wagner, C., Riggs, W., Davis, L., Moulder, J. & Muilenberg, G. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1979).

    Google Scholar 

  37. 37

    Sotomura, T., Adachi, K., Taguchi, M., Tatsuma, T. & Oyama, N. Developing stable, low impedance interface between metallic lithium anode and polyacrylonitrile-based polymer gel electrolyte by preliminary voltage cycling. J. Power Sources 81, 192–199 (1999).

    Article  Google Scholar 

  38. 38

    Brousse, T. et al. All oxide solid-state lithium-ion cells. J. Power Sources 68, 412–415 (1997).

    CAS  Article  Google Scholar 

  39. 39

    Nakahara, K., Nakajima, R., Matsushima, T. & Majima, H. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 117, 131–136 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Lu, Y., Moganty, S. S., Schaefer, J. L. & Archer, L. A. Ionic liquid–nanoparticle hybrid electrolytes. J. Mater. Chem. 22, 4066–4072 (2012).

    CAS  Article  Google Scholar 

Download references


This material is based on work supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001086. This work made use of the electrochemical characterization facilities of the KAUST-CU Center for Energy and Sustainability, which is supported by the King Abdullah University of Science and Technology (KAUST) through Award number KUS-C1-018-02. Y.L. thanks J. Jiang and C. Ober in the department of Material Science & Engineering at Cornell University for help with contact angle measurements. The thick LTO electrodes were produced at the US Department of Energy’s (DOE) Cell Fabrication Facility, Argonne National Laboratory. The Cell Fabrication Facility is fully supported by the DOE Vehicle Technologies Program (VTP) within the core funding of the Applied Battery Research (ABR) for Transportation Program.

Author information




Y.L. and L.A.A. conceived the experiments reported in the manuscript. Y.L. performed all studies of the liquid electrolytes. These results are presented in Figs 1a,2a–c,3,4 and 6. Z.T. performed experiments in which liquid electrolytes are infused in nanoporous alumina. These results are reported in Figs 1b and 2d. Y.L. and Z.T. performed the SEM and EDX analyses (Figs 2e–g and 5). Z.T. carried out the XPS analysis in the Supplementary Information. Y.L. and L.A.A. wrote the paper.

Corresponding author

Correspondence to Lynden A. Archer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5734 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Tu, Z. & Archer, L. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Mater 13, 961–969 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing