Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy


The An+1BnO3n+1 Ruddlesden–Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order members. To understand the fundamental physics of layered oxide growth, we have developed an oxide molecular beam epitaxy system with in situ synchrotron X-ray scattering capability. We present results demonstrating that layered oxide films can dynamically rearrange during growth, leading to structures that are highly unexpected on the basis of the intended layer sequencing. Theoretical calculations indicate that rearrangement can occur in many layered oxide systems and suggest a general approach that may be essential for the construction of metastable Ruddlesden–Popper phases. We demonstrate the utility of the new-found growth strategy by performing the first atomically controlled synthesis of single-crystalline La3Ni2O7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layer swap during the growth of Sr2TiO4.
Figure 2: Energetics for different layer sequencing during growth.
Figure 3: Layer swapping in additional systems.
Figure 4: Synthesis of single-crystal La3Ni2O7.


  1. Bibes, M., Villegas, J. & Barthelemy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5–84 (2011).

    Article  CAS  Google Scholar 

  2. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nature Mater. 11, 92–94 (2012).

    Article  CAS  Google Scholar 

  3. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. Mater. Res. Soc. Bull. 37, 261–270 (2012).

    Article  CAS  Google Scholar 

  4. Eckstein, J. N. & Bozovic, I. High-temperature superconducting multilayers and heterostructures grown by atomic layer-by-layer molecular beam epitaxy. Annu. Rev. Mater. Sci. 25, 679–709 (1995).

    Article  CAS  Google Scholar 

  5. Yamamoto, H., Naito, M. & Sato, H. A new superconducting cuprate prepared by low-temperature thin-film synthesis in a Ba–Cu–O system. Jpn. J. Appl. Phys. 36, L341–L344 (1997).

    Article  Google Scholar 

  6. Schlom, D. G., Chen, L-Q., Pan, X., Schmehl, A. & Zurbuchen, M. A. A Thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429–2454 (2008).

    Article  CAS  Google Scholar 

  7. Locquet, J. P., Catana, A., Mächler, E., Gerber, J. & Bednorz, J. G. Block-by-block deposition: A new growth method for complex oxide thin films. Appl. Phys. Lett. 64, 372–374 (1994).

    Article  CAS  Google Scholar 

  8. Ruddlesden, S. N. & Popper, P. New compounds of the K2NiF4 type. Acta Crystallogr. 10, 538–539 (1957).

    Article  CAS  Google Scholar 

  9. Haeni, J. H. et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett. 78, 3292–3294 (2001).

    Article  CAS  Google Scholar 

  10. Lee, C-H. et al. Effect of reduced dimensionality on the optical band gap of SrTiO3 . Appl. Phys. Lett. 102, 122901 (2013).

    Article  Google Scholar 

  11. Udayakumar, K. R. & Cormack, A. N. Structural aspects of phase equilibria in the strontium–titanium–oxygen system. J. Am. Ceram. Soc. 71, C469–C471 (1988).

    Article  CAS  Google Scholar 

  12. Noguera, C. Theoretical investigation of the Ruddlesden–Popper compounds Srn+1TinO3n+1(n = 1 − 3). Phil. Mag. Lett. 80, 173–180 (2000).

    Article  CAS  Google Scholar 

  13. Le Bacq, O., Salinas, E., Pisch, A., Bernard, C. & Pasturel, A. First-principles structural stability in the strontium–titanium–oxygen system. Phil. Mag. 86, 2283–2292 (2006).

    Article  CAS  Google Scholar 

  14. McCoy, M. A., Grimes, R. W. & Lee, W. E. Phase stability and interfacial structures in the SrO–SrTiO3 system. Phil. Mag. A 75, 833–846 (1997).

    Article  CAS  Google Scholar 

  15. Tian, W., Pan, X. Q., Haeni, J. H. & Schlom, D. G. Transmission electron microscopy study of n = 1 − 5Srn+1TinO3n+1 epitaxial thin films. J. Mater. Res. 16, 2013–2026 (2001).

    Article  CAS  Google Scholar 

  16. Lee, C-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2014).

    Article  Google Scholar 

  17. Koster, G., Kropman, B. L., Rijnders, G. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920–2922 (1998).

    Article  CAS  Google Scholar 

  18. Nie, Y. F. et al. Atomically precise interfaces from non-stoichiometric deposition. Nature Commun. 5, 4530 (2014).

    Article  CAS  Google Scholar 

  19. Hong, H. & Chiang, T-C. A six-circle diffractometer system for synchrotron X-ray studies of surfaces and thin film growth by molecular beam epitaxy. Nucl. Instrum. Methods Phys. Res. A 572, 942–947 (2007).

    Article  CAS  Google Scholar 

  20. Kresse, G. & Furthmuäller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  21. Kresse, G. & Furthmuäller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  22. Sekiguchi, S. et al. Atomic force microscopic observation of SrTiO3 polar surface. Solid State Ion. 108, 73–79 (1998).

    Article  CAS  Google Scholar 

  23. Fisher, P. et al. A series of layered intergrowth phases grown by molecular beam epitaxy: SrmTiO2+m (m = 1 − 5). Appl. Phys. Lett. 91, 252901 (2007).

    Article  Google Scholar 

  24. Goniakowski, J., Finocchi, F. & Noguera, C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008).

    Article  Google Scholar 

  25. Wu, K-T., Soh, Y-A. & Skinner, S. J. Epitaxial growth of mixed conducting layered Ruddlesden–Popper Lan+1NinO3n+1(n = 1, 2 and 3) phases by pulsed laser deposition. Mater. Res. Bull. 48, 3783–3789 (2013).

    Article  CAS  Google Scholar 

  26. Zhang, Z., Greenblatt, M. & Goodenough, J. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ . J. Solid State Chem. 108, 402 (1994).

    Article  CAS  Google Scholar 

  27. Nakhmanson, S. M. & Naumov, I. Goldstone-like states in a layered perovskite with frustrated polarization: A first-principles investigation of PbSr2Ti2O7 . Phys. Rev. Lett. 104, 097601 (2010).

    Article  CAS  Google Scholar 

  28. Benedek, N. & Fennie, C. Hybrid improper ferroelectricity: A mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  29. Birol, T., Benedek, N. A. & Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden–Popper Srn+1TinO3n+1 . Phys. Rev. Lett. 107, 257602 (2011).

    Article  Google Scholar 

  30. Rondinelli, J. M. & Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 24, 1961–1968 (2012).

    Article  CAS  Google Scholar 

  31. Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-Popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  32. Perdew, J. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  33. Wahl, R., Vogtenhuber, D. & Kresse, G. SrTiO3 and BaTiO3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals. Phys. Rev. B 78, 104116 (2008).

    Article  Google Scholar 

Download references


The authors acknowledge discussions with D. G. Schlom, K. Lee and Y. Nie, and support at the APS from H. Zhou and C. Schlepütz. S.H.C., J.A.E., A.B. and D.D.F. were supported by the US. Department of Energy, Office of Science, Materials Sciences and Engineering Division. Work performed at Argonne National Laboratory, including the Advanced Photon Source, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. The calculations were carried out on the Fusion Cluster of Argonne’s Laboratory Computing Resource Center, at NERSC (supported by DOE), and on Argonne’s Carbon Cluster under award CNM29783 and CNM35702. D.M. and G.L. were partially supported by University of Wisconsin Materials Research Science and Engineering Center (DMR-1121288).

Author information

Authors and Affiliations



J.H.L., Z.L., I.C.T., S.H.C., A.B., J.A.E., H.H., D.D.F. and J.W.F. developed the in situ oxide MBE system and participated in the real-time growth experiments. J.H.L., Z.L., I.C.T., D.D.F. and J.W.F. handled analysis of the experimental data. G.L., M.M., M.G., S.M.N., J.J. and D.M. were responsible for the detailed theoretical calculations related to the experiments. All authors participated in the discussion of data/analysis/conclusions and in the writing of the manuscript.

Corresponding authors

Correspondence to D. Morgan or J. W. Freeland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1143 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Luo, G., Tung, I. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nature Mater 13, 879–883 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing