Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hydrogen storage in Pd nanocrystals covered with a metal–organic framework

Abstract

Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal–organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure–composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The composite material of Pd and HKUST-1.
Figure 2: Hydrogen absorption/desorption behaviour.
Figure 3: Kinetic properties for hydrogen absorption.
Figure 4: Solid-state 2H NMR spectra.

Similar content being viewed by others

References

  1. Dunn, S. Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrog. Energy 27, 235–264 (2002).

    Article  CAS  Google Scholar 

  2. Hughes, J. D. Energy: A reality check on the shale revolution. Nature 494, 307–308 (2013).

    Article  CAS  Google Scholar 

  3. Alefeld, G. & Völkl, J Hydrogen in Metals II (Springer, 1978).

    Book  Google Scholar 

  4. Yasumatsu, T., Wan, J. L., Matsuyama, M. & Watanabe, K. Absorption of hydrogen isotopes by Pd–Pt alloys. J. Alloys Compd. 293–295, 900–907 (1999).

    Article  Google Scholar 

  5. Kibria, A. K. M. F. & Sakamoto, Y. The effect of alloying of palladium with silver and rhodium on the hydrogen solubility, miscibility gap and hysteresis. Int. J. Hydrog. Energy 25, 853–859 (2000).

    Article  Google Scholar 

  6. James, S. L. Metal–organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003).

    Article  CAS  Google Scholar 

  7. Kitagawa, S., Kitaura, R. & Noro, S-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  8. Shimizu, G. K. H., Vaidhyanathan, R. & Taylor, J. M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev. 38, 1430–1449 (2009).

    Article  CAS  Google Scholar 

  9. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  10. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  11. Li, J. R., Kuppler, R. J. & Zhou, H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  12. Li, J. R., Sculley, J. & Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012).

    Article  CAS  Google Scholar 

  13. Horcajada, P. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 9, 172–178 (2010).

    Article  CAS  Google Scholar 

  14. Farha, O. K. et al. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944–948 (2010).

    Article  CAS  Google Scholar 

  15. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  16. Chui, S. S-Y. et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  17. Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    Article  CAS  Google Scholar 

  18. Lim, B. et al. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 19, 189–200 (2009).

    Article  CAS  Google Scholar 

  19. Yamauchi, M., Kobayashi, H. & Kitagawa, H. Hydrogen storage mediated by Pd and Pt nanoparticles. Chem. Phys. Chem. 10, 2566–2576 (2009).

    Article  CAS  Google Scholar 

  20. Nishibori, E. et al. The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies. Nucl. Instrum. Methods A 467–468, 1045–1048 (2001).

    Article  Google Scholar 

  21. Zlotea, C. et al. Pd nanoparticles embedded into a metal-organic framework: Synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 132, 2991–2997 (2010).

    Article  CAS  Google Scholar 

  22. Cheon, Y. E. & Suh, M. P. Enhanced hydrogen storage by palladium nanoparticles fabricated in a redox-active metal–organic framework. Angew. Chem. Int. Ed. 48, 2899–2903 (2009).

    Article  CAS  Google Scholar 

  23. Barabino, D. J. & Dybowski, C. Nuclear magnetic resonance of hydrogen sorbed by powdered palladium metal and alumina-supported palladium. Solid State Nucl. Magn. Reson. 1, 5–12 (1992).

    Article  CAS  Google Scholar 

  24. Papaconstantopoulos, D. A., Klein, B. M., Economou, E. N. & Boyer, L. L. Band structure and superconductivity of PdDx and PdHx. Phys. Rev. B 17, 141–150 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synchrotron XRD measurements were supported by the Japan Synchrotron Radiation Research Institute (JASRI; Proposal No. 2012B1516). G.L. is grateful for a PhD fellowship donated by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

H.Kitagawa and H.Kobayashi designed this study. G.L. synthesized samples and performed TEM, PC isotherms, XRD and solid-state 2H NMR measurements under the supervision of R.I. and H.Kobayashi. Y.K., K.K. and M.T. assisted with the in situ synchrotron XRD measurements. T.Y., S.T. and S.M. conducted HAADF-STEM and EDX mapping. H.Kobayashi, H.Kitagawa, J.M.T. and G.L. co-wrote the manuscript. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Hirokazu Kobayashi or Hiroshi Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary file (PDF 1368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Kobayashi, H., Taylor, J. et al. Hydrogen storage in Pd nanocrystals covered with a metal–organic framework. Nature Mater 13, 802–806 (2014). https://doi.org/10.1038/nmat4030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing