Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2

Abstract

Condensed-matter systems provide a rich setting to realize Dirac1 and Majorana2 fermionic excitations as well as the possibility to manipulate them for potential applications3,4. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials5,6 or in topological insulator multilayers7 and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly8. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals9,10,11. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II–V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal and band structures of a Cd3As2(112) cleaved crystal.
Figure 2: Landau level spectroscopy.
Figure 3: Bulk quasiparticle interference projected onto the (112) plane.
Figure 4: Landau level simulation with the modified Kane Hamiltonian.

References

  1. 1

    Castro Neto, A. H., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Nayak, C., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  6. 6

    Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4 . Phys. Rev. Lett. 107, 186806 (2011).

    Article  Google Scholar 

  7. 7

    Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Hosur, P. & Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  Google Scholar 

  11. 11

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

    Article  Google Scholar 

  12. 12

    Orlita, M. et al. Observation of three-dimensional massless Kane fermions in a zinc-blende crystal. Nature Phys. 10, 233–238 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi-arcs in Weyl and Dirac semi-metals. Preprint at http://arXiv.org/abs/1402.6342 (2014)

  15. 15

    Kharzeev, D. E. & Yee, H-U. Anomaly induced chiral magnetic current in a Weyl semimetal: Chiral electronics. Phys. Rev. B 88, 115119 (2013).

    Article  Google Scholar 

  16. 16

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nature Commun. 5, 3786 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Borisenko, S., Gibson, Q., Evtushinsky, D., Zabolotnyy, V. & Büchner, B. Experimental realization of a three-dimensional Dirac semimetal. Preprint at http://arXiv.org/abs/1309.7978 (2013)

  19. 19

    Xu, S-Y. et al. Observation of a bulk 3D Dirac multiplet, Lifshitz transition, and nestled spin states in Na3Bi. Preprint at http://arXiv.org/abs/1312.7624 (2013)

  20. 20

    Turner, W., Fischler, A. & Reese, W. Physical properties of several II–V semiconductors. Phys. Rev. 121, 759–767 (1961).

    CAS  Article  Google Scholar 

  21. 21

    Radautsan, S. I., Arushanov, E. K. & Chuiko, G. P. The conduction band of cadmium arsenide. Phys. Status Solidi 20, 221–226 (1973).

    CAS  Article  Google Scholar 

  22. 22

    Ali, M. N. et al. The crystal and electronic structures of Cd3As2, the 3D electronic analogue to graphene. Inorg. Chem. 53, 4062–4067 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Misra, S. et al. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields. Rev. Sci. Instrum. 84, 103903 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Ashby, P. E. C. & Carbotte, J. P. Theory of magnetic oscillations in Weyl semimetals. Eur. Phys. J. B 87, 92 (2014).

    Article  Google Scholar 

  25. 25

    Spitzer, D. P., Castellion, G. A. & Haacke, G. Anomalous thermal conductivity of Cd3As2 and the Cd3As2–Zn3As2 alloys. J. Appl. Phys. 37, 3795–3801 (1966).

    CAS  Article  Google Scholar 

  26. 26

    Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Morgenstern, M., Klijn, J., Meyer, C. & Wiesendanger, R. Real-space observation of drift states in a two-dimensional electron system at high magnetic fields. Phys. Rev. Lett. 90, 056804 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Okada, Y., Serbyn, M., Lin, H. & Walkup, D. Observation of Dirac node formation and mass acquisition in a topological crystalline insulator. Science 341, 1496–1499 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Hanaguri, T., Igarashi, K. & Kawamura, M. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3 . Phys. Rev. B 82, 081305 (2010).

    Article  Google Scholar 

  30. 30

    Wright, A. R. & McKenzie, R. H. Quantum oscillations and Berry’s phase in topological insulator surface states with broken particle–hole symmetry. Phys. Rev. B 87, 085411 (2013).

    Article  Google Scholar 

  31. 31

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in Cd3As2: Protection from backscattering in a Dirac semimetal. Preprint at http://arXiv.org/abs/1404.7794 (2014)

  32. 32

    Wallace, P. R. Electronic g-factor in Cd3As2 . Phys. Status Solidi 92, 49–55 (1979).

    CAS  Article  Google Scholar 

  33. 33

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nature Mater. (2014)10.1038/nmat3990

Download references

Acknowledgements

The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by the ARO MURI programme W911NF-12-1-0461, DARPA-SPWAR Meso programme N6601-11-1-4110, NSF-DMR1104612, ONR- N00014-11-1-0635, and NSF-MRSEC NSF-DMR0819860 programmes.

Author information

Affiliations

Authors

Contributions

S.J. and B.B.Z. performed STM experiments with assistance from A.G. Theoretical simulations were constructed by I.K., A.C.P. and A.V. Q.D.G. and R.J.C. synthesized the materials. S.J. and B.B.Z. performed analysis and modelling. The manuscript was written by S.J., B.B.Z., B.E.F. and A.Y. All authors commented on the manuscript.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Zhou, B., Gyenis, A. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nature Mater 13, 851–856 (2014). https://doi.org/10.1038/nmat4023

Download citation

Further reading

Search

Quick links