Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air-stable n-type colloidal quantum dot solids

Abstract

Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface engineering of CQD solids for air stability.
Figure 2: Halide ligands incorporated in solution-phase and solid-state ligand exchanges.
Figure 3: Air-stable CQD solar cells.
Figure 4: Inverted quantum junction devices leverage process-compatible n- and p-type CQD solids.
Figure 5: Inverted quantum junction solar cell.

Similar content being viewed by others

References

  1. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photon. 7, 13–23 (2013).

    Article  CAS  Google Scholar 

  2. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nature Nanotech. 7, 369–373 (2012).

    Article  CAS  Google Scholar 

  3. Tang, J. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mater. 10, 765–771 (2011).

    Article  CAS  Google Scholar 

  4. Wang, X. et al. Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photon. 5, 480–484 (2011).

    Article  CAS  Google Scholar 

  5. Luther, J. M. et al. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008).

    Article  CAS  Google Scholar 

  6. Brown, P. R. et al. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer. Nano Lett. 11, 2955–2961 (2011).

    Article  CAS  Google Scholar 

  7. Ma, W. et al. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5, 8140–8147 (2011).

    Article  CAS  Google Scholar 

  8. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  9. David, K. K., Lai, Y., Diroll, B. T., Murray, C. B. & Kagan, C. R. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nature Commun. 3, 1216 (2012).

    Article  Google Scholar 

  10. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nature Nanotech. 6, 348–352 (2011).

    Article  CAS  Google Scholar 

  11. Choi, J. H. et al. Bandlike transport in strongly coupled and doped quantum dot solids: A route to high-performance thin-film electronics. Nano Lett. 12, 2631–2638 (2012).

    Article  CAS  Google Scholar 

  12. Choi, J. H. et al. In-situ repair of high-performance, flexible nanocrystal electronics for large-area fabrication and operation in air. ACS Nano 7, 8275–8283 (2013).

    Article  CAS  Google Scholar 

  13. Sargent, E. H. Colloidal quantum dot solar cells. Nature Photon. 6, 133–135 (2012).

    Article  CAS  Google Scholar 

  14. Johnston, K. W. et al. Schottky-quantum dot photovoltaics for efficient infrared power conversion. Appl. Phys. Lett. 92, 151115 (2008).

    Article  Google Scholar 

  15. Pattantyus-Abraham, A. G. et al. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4, 3374–3380 (2010).

    Article  CAS  Google Scholar 

  16. Engel, J. H., Surendranath, Y. & Alivisatos, A. P. Controlled chemical doping of semiconductor nanocrystals using redox buffers. J. Am. Chem. Soc. 134, 13200–13203 (2012).

    Article  CAS  Google Scholar 

  17. Chang, L-Y., Lunt, R. R., Brown, P. R., Bulović, V. & Bawendi, M. G. Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett. 13, 994–999 (2013).

    Article  CAS  Google Scholar 

  18. Osedach, T. P. et al. Bias-stress effect in 1, 2-ethanedithiol-treated PbS quantum dot field-effect transistors. ACS Nano 6, 3121–3127 (2012).

    Article  CAS  Google Scholar 

  19. Zhao, N. et al. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4, 3743–3752 (2010).

    Article  CAS  Google Scholar 

  20. Jean, J. et al. ZnO Nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater. 25, 2790–2796 (2013).

    Article  CAS  Google Scholar 

  21. Strasfeld, D. B., Dorn, A., Wanger, D. D. & Bawendi, M. G. Imaging Schottky barriers and ohmic contacts in PbS quantum dot devices. Nano Lett. 12, 569–575 (2012).

    Article  CAS  Google Scholar 

  22. Luther, J. M. & Pietryga, J. M. Stoichiometry control in quantum dots: A viable analog to impurity doping of bulk materials. ACS Nano 7, 1845–1849 (2013).

    Article  CAS  Google Scholar 

  23. Lan, X. et al. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25, 1769–1773 (2013).

    Article  CAS  Google Scholar 

  24. Luther, J. M. et al. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 22, 3704–3707 (2013).

    Article  Google Scholar 

  25. Nozik, A. J. et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873–6890 (2010).

    Article  CAS  Google Scholar 

  26. Scheele, M. et al. Nonmonotonic size dependence in the hole mobility of methoxide-stabilized PbSe quantum dot solids. ACS Nano 7, 6774–6781 (2013).

    Article  CAS  Google Scholar 

  27. Ma, W., Luther, J. M., Zheng, H., Wu, Y. & Alivisatos, A. P. Photovoltaic devices employing ternary PbSxSe1−x nanocrystals. Nano Lett. 9, 1699–1703 (2009).

    Article  CAS  Google Scholar 

  28. Engel, J. & Alivisatos, A. P. Postsynthetic doping control of nanocrystal thin films: Balancing space charge to improve photovoltaic efficiency. Chem. Mater. 26, 153–162 (2014).

    Article  CAS  Google Scholar 

  29. Ning, Z. et al. Wave-function engineering of CdSe/CdS Core/Shell quantum dots for enhanced electron transfer to a TiO2 Substrate. J. Phys. Chem. C 114, 15184–15189 (2010).

    Article  CAS  Google Scholar 

  30. Ip, A. H. et al. Hybrid passivated colloidal quantum dot solids. Nature Nanotech. 7, 577–582 (2012).

    Article  CAS  Google Scholar 

  31. Research Cell Efficiency Records by National Renewable Energy Laboratory, version at November 2013. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  32. Zhitomirsky, D. et al. N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mater. 24, 6181–6185 (2012).

    Article  CAS  Google Scholar 

  33. Tang, J. et al. Quantum junction solar cells. Nano Lett. 12, 4889–4894 (2012).

    Article  CAS  Google Scholar 

  34. Ning, Z. et al. Graded doping for enhanced colloidal quantum dot photovoltaics. Adv. Mater. 25, 1719–1723 (2013).

    Article  CAS  Google Scholar 

  35. Wei, P., Oh, J. H., Dong, G. F. & Bao, Z. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010).

    Article  CAS  Google Scholar 

  36. Liu, Y. PbSe Quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V−1 s−1. Nano Lett. 13, 1578–1587 (2013).

    Article  CAS  Google Scholar 

  37. Shim, M. & Guyot-Sionnest, P. n-type colloidal semiconductor nanocrystals. Nature 407, 981–983 (2000).

    Article  CAS  Google Scholar 

  38. Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  39. Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).

    Article  CAS  Google Scholar 

  40. Koh, W-k. et al. Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene. Sci. Rep. 3, 2004 (2013).

    Article  Google Scholar 

  41. Voznyy, O. et al. Charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano 6, 8448–8455 (2012).

    Article  CAS  Google Scholar 

  42. Hassinen, A. et al. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. J. Am. Chem. Soc. 134, 20705–20712 (2012).

    Article  CAS  Google Scholar 

  43. Vande Vondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  44. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article  CAS  Google Scholar 

  45. Ning, Z. et al. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Adv. Mater. 24, 6295–6299 (2012).

    Article  CAS  Google Scholar 

  46. Burgelman, M., Nollet, P. & Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000).

    Article  Google Scholar 

  47. Liu, H. et al. Tin oxide films for nitrogen dioxide gas detection at low temperatures. Sens. Actuat. B 177, 460–466 (2013).

    Article  CAS  Google Scholar 

  48. Barkhouse, D. A. R. et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011).

    Article  CAS  Google Scholar 

  49. Liu, H. et al. Systematic optimization of quantum junction colloidal quantum dot solar cells. Appl. Phys. Lett. 101, 151112 (2012).

    Article  Google Scholar 

  50. Liu, H. et al. Electron acceptor materials engineering in colloidal quantum dot solar cells. Adv. Mater. 23, 3832–3837 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

This publication is based in part on work supported by Award KUS-11-009-21, made by King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund—Research Excellence Program, and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. We thank Angstrom Engineering, and Innovative Technology, for useful discussions regarding material deposition methods and control of the glovebox environment, respectively. Computations were performed using the BlueGene/Q supercomputer at the SciNet HPC Consortium provided through the Southern Ontario Smart Computing Innovation Platform (SOSCIP). The SOSCIP consortium is funded by the Ontario Government and the Federal Economic Development Agency for Southern Ontario. H.D. would like to acknowledge financial support from the China Scholarship Council (CSC). The authors thank Larissa Levina for the assistance with CQDs synthesis, S. M. Thon, A. H. Ip and M. Adachi for helpful discussions, S. Masala and J. McDowell for measurement assistance, and E. Palmiano, R. Wolowiec and D. Kopilovic for their help during the course of study. We thank L. Goncharova for assistance with RBS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Z.N., O.V., O.M.B. and E.H.S. designed and directed this study, analysed the results, and co-wrote the manuscript. Z.N. contributed to all experimental work. O.V. carried out the density functional theory simulations and XPS measurements. J.P, J.X. and H.D. assisted in device fabrication. S.H. and J.M. performed transient photovoltage experiments. V.A carried out optoelectronic simulations. M.L., H.L. and J.T. performed NO2 gas sensing measurements. K.W.K., L.R., A.L., G.C. and B.S. carried out fabrication and device characterization of specific devices. A.R.K. and A.A. performed UPS measurement. J-P.S. and I.H. carried out the Kelvin probe study.

Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Z., Voznyy, O., Pan, J. et al. Air-stable n-type colloidal quantum dot solids. Nature Mater 13, 822–828 (2014). https://doi.org/10.1038/nmat4007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing