Acoustic metasurface with hybrid resonances



An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic–electrical energy conversion efficiency of 23% is achieved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geometry and resonance characteristics of the metasurface’s unit cell.
Figure 2: Manifestations of the hybrid resonance and its energy conversion functionality.
Figure 4: Unity (>0.99) absorption attained at tunable multiple frequencies.
Figure 3: Relationships between different parameters at the impedance-matched hybrid resonant frequency.


  1. 1

    De Rosny, J. & Fink, M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002).

  2. 2

    Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

  3. 3

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (March, 1997).

  4. 4

    Arenas, J. P. & Crocker, M. J. Recent trends in porous sound-absorbing materials. J. Sound Vib. 44, 12–18 (2010).

  5. 5

    Maa, D-Y. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861 (1998).

  6. 6

    Fuchs, H. V. & Zha, X. Micro-perforated structures as sound absorbers—a review and outlook. Acta. Acust. United Acc. 92, 139–146 (2006).

  7. 7

    Maa, D-Y. Practical single MPP absorber. Int. J. Acoust. Vib. 12, 3–6 (2007).

  8. 8

    Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

  9. 9

    Liang, Z. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

  10. 10

    Xie, Y., Popa, B-I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

  11. 11

    Xie, Y., Konneker, A., Popa, B-I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

  12. 12

    Scheuren, J. Handbook of Engineering Acoustics 301–334 (Springer, 2013).

  13. 13

    Yu, N. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011).

  14. 14

    Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

  15. 15

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  16. 16

    Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

  17. 17

    Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: Time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

  18. 18

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

  19. 19

    Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

  20. 20

    Park, J. J., Lee, K. J. B., Wright, O. B., Jung, M. K. & Lee, S. H. Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. Phys. Rev. Lett. 110, 244302 (2013).

  21. 21

    Fleury, R. & Alù, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

  22. 22

    Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

  23. 23

    Yang, Z., Dai, H., Chan, N., Ma, G. & Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

  24. 24

    Mei, J., Ma, G., Yang, M., Yang, J. & Sheng, P. Dynamic Mass Density and Acoustic Metamaterials. Acoustic Metamaterials and Phononic Crystals (Springer, 2013).

  25. 25

    Ma, G., Yang, M., Yang, Z. & Sheng, P. Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013).

  26. 26

    Yang, M., Ma, G., Yang, Z. & Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

  27. 27

    Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

  28. 28

    Yang, M., Ma, G., Wu, Y., Yang, Z. & Sheng, P. Homogenization scheme for acoustic metamaterials. Phys. Rev. B 89, 064309 (2014).

  29. 29

    Horowitz, S. B. & Sheplak, M. Aeroacoustic applications of acoustic energy harvesting. J. Acoust. Soc. Am. 134, 4155 (2013).

  30. 30

    Horowitz, S. B., Sheplak, M., Cattafesta, L. N.III & Nishida, T. A MEMS acoustic energy harvester. J. Micromech. Microeng. 16, S174–S181 (2006).

  31. 31

    Cha, S. N. et al. Sound-driven piezoelectric nanowirebased nanogenerators. Adv. Mater. 22, 4726–4730 (2010).

  32. 32

    Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

  33. 33

    Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

  34. 34

    Fan, F-R., Tian, Z-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energ. 1, 328–334 (2012).

  35. 35

    Zhu, G. et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013).

  36. 36

    Ladabaum, I., Jin, X., Soh, H. T., Atalar, A. & Khuri-Yakub, B. T. Surface micromachined capacitive ultrasonic transducers. IEEE. Trans. Ultrason. Ferrelectr. Freq. Control 45, 678–690 (1998).

  37. 37

    Ergun, A. S., Yaralioglu, G. G. & Khuri-Yakub, B. T. Capacitive micromachined ultrasonic transducers: Theory and technology. J. Aerospace Eng. 16, 76–84 (2003).

  38. 38

    Roes, M., Hendrix, M. & Duarte, J. IECON 2011–37th Annual Conference on IEEE Industrial Electronics Society 1238–1243 (2011)

  39. 39

    Shmilovitz, D., Ozeri, S., Wang, C. & Spivak, B. Noninvasive control of the implant power for an ultrasonic transcutaneous energy transfer device. IEEE Trans. Biomed. Eng. 61, 995–1004 (2013).

  40. 40

    Fox, J. D., Kino, G. S. & Khuri-Yakub, B. T. Acoustic microscopy in air at 2 MHz. Appl. Phys. Lett. 47, 465–467 (1985).

  41. 41

    Ho, K. M., Yang, Z., Zhang, X. X. & Sheng, P. Measurements of sound transmission through panels of locally resonant materials between impedance tubes. Appl. Acoust. 66, 751–765 (2005).

Download references


P.S. and M.Y. wish to thank Ying Wu and Jun Mei for helpful discussions. This work is supported by AoE/P-02/12 and HKUST2/CRF/11G.

Author information

P.S. initiated, designed and supervised the project. M.Y. and P.S. provided the theoretical framework. G.M. designed and carried out the experiments. S.X. assisted with the experiments. M.Y. carried out the numerical simulations. G.M., M.Y., Z.Y. and P.S. analysed the data. G.M., M.Y. and P.S. wrote the manuscript.

Correspondence to Ping Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Yang, M., Xiao, S. et al. Acoustic metasurface with hybrid resonances. Nature Mater 13, 873–878 (2014).

Download citation

Further reading