Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stretchable liquid-crystal blue-phase gels

Abstract

Liquid-crystalline polymers are materials of considerable scientific interest and technological value1,2,3. An important subset of these materials exhibit rubber-like elasticity, combining the optical properties of liquid crystals with the mechanical properties of rubber. Moreover, they exhibit behaviour not seen in either type of material independently2, and many of their properties depend crucially on the particular mesophase employed. Such stretchable liquid-crystalline polymers have previously been demonstrated in the nematic, chiral-nematic, and smectic mesophases2,4. Here, we report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that remains electro-optically switchable under a moderate applied voltage, and whose optical properties can be manipulated by an applied strain. We also find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and possibilities for low-voltage electro-optic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Free-standing films of a blue-phase gel.
Figure 2: Colour changes in a stretchable blue-phase gel.
Figure 3: Electro-optics of a distorted blue-phase gel.

Similar content being viewed by others

References

  1. Donald, A. M., Windle, A. H. & Hanna, S. Liquid Crystalline Polymers 2nd edn (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  2. Warner, M. & Terentjev, E. M. Liquid Crystal Elastomers (Oxford Univ. Press, 2007).

    Google Scholar 

  3. Broer, D. J., Crawford, G. P. & Žumer, S. Cross-Linked Liquid Crystalline Systems (CRC Press, 2011).

    Book  Google Scholar 

  4. Finkelmann, H., Kock, H. J. & Rehage, G. Investigations on liquid crystalline polysiloxanes. 3: Liquid crystalline elastomers—a new type of liquid-crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981).

    Article  CAS  Google Scholar 

  5. Nakata, M. et al. End-to-end stacking and liquid crystal condensation of 6- to 20-base pair DNA duplexes. Science 318, 1276–1279 (2007).

    Article  CAS  Google Scholar 

  6. Golubović, L. & Lubensky, T. C. Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 63, 1082–1085 (1989).

    Article  Google Scholar 

  7. Warner, M., Bladon, P. & Terentjev, E. M. “Soft elasticity”—deformation without resistance in liquid crystal elastomers. J. Phys. II France 4, 93–102 (1994).

    Article  CAS  Google Scholar 

  8. De Gennes, P-G. Artificial muscles based on nematic gels. Macromol. Symp. 113, 39–49 (1997).

    Article  CAS  Google Scholar 

  9. D’allest, J. F., Gilli, J. M. & Sixou, P. Blue phase in liquid crystal polymer mixtures. Mol. Cryst. Liq. Cryst. 155, 571–580 (1988).

    Google Scholar 

  10. Gilli, J. M., Kamaye, M. & Sixou, P. Phases bleues “figées” dans un polysiloxane mésomorphe. J. Phys. Fr. 50, 2911–2918 (1989).

    Article  CAS  Google Scholar 

  11. Stegemeyer, H., Onusseit, H. & Finkelmann, H. Formation of a blue phase in a liquid-crystalline side chain polysiloxane. Makromol. Chem. Rapid Commun. 10, 571–574 (1989).

    Article  CAS  Google Scholar 

  12. Leforestier, A. & Livolant, F. DNA liquid crystalline blue phases: Electron microscopy evidence and biological implications. Liq. Cryst. 17, 651–658 (1994).

    Article  CAS  Google Scholar 

  13. Kitzerow, H-S. et al. Observation of blue phases in chiral networks. Liq. Cryst. 14, 911–916 (1993).

    Article  CAS  Google Scholar 

  14. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002).

    Article  CAS  Google Scholar 

  15. Gerber, P. R. Electro-optical effects of a small-pitch blue-phase system. Mol. Cryst. Liq. Cryst. 116, 197–206 (1985).

    Article  CAS  Google Scholar 

  16. Hisakado, Y., Kikuchi, H., Nagamura, T. & Kajiyama, T. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases. Adv. Mater. 17, 96–98 (2005).

    Article  CAS  Google Scholar 

  17. Chen, Y., Xu, D., Wu, S-T., Yamamoto, S-I. & Haseba, Y. A low voltage and submillisecond-response polymer-stabilized blue phase liquid crystal. Appl. Phys. Lett. 102, 141116 (2013).

    Article  Google Scholar 

  18. Samsung Electronics, 15” Blue Phase Mode LC Display, Seminar and Exhibition Presented at the Society for Information Display (Intern. Symp., 2008).

    Google Scholar 

  19. Broer, D. J., Finkelmann, H. & Kondo, K. In-situ photopolymerization of an oriented liquid-crystalline acrylate. Makromol. Chem. 189, 185–194 (1988).

    Article  CAS  Google Scholar 

  20. Broer, D. J., Lub, J. & Mol, G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature 378, 467–469 (1995).

    Article  CAS  Google Scholar 

  21. Castles, F. et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nature Mater. 11, 599–603 (2012).

    Article  CAS  Google Scholar 

  22. McConney, M. E. et al. Electrically induced color changes in polymer-stabilized cholesteric liquid crystals. Adv. Opt. Mater. 1, 417–412 (2013).

    Article  Google Scholar 

  23. Coles, H. J. & Pivnenko, M. N. Liquid crystal ‘blue phases’ with a wide temperature range. Nature 436, 997–1000 (2005).

    Article  CAS  Google Scholar 

  24. Finkelmann, H., Kim, S. T., Munoz, A., Palffy-Muhoray, P. & Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072 (2001).

    Article  CAS  Google Scholar 

  25. Porsch, F., Stegemeyer, H. & Hiltrop, K. Electric field-induced birefringence in liquid-crystalline blue phases. Z. Naturforsch. 39 a, 475–480 (1984).

    Google Scholar 

  26. Kitzerow, H-S. Blue phases: Prior art, potential polar effects, challenges. Ferroelectrics 395, 66–85 (2010).

    Article  Google Scholar 

  27. Nye, J. F. Physical Properties of Crystals (Oxford Univ. Press, 1985).

    Google Scholar 

  28. Alexander, G. P. & Yeomans, J. M. Flexoelectric blue phases. Phys. Rev. Lett. 99, 067801 (2007).

    Article  CAS  Google Scholar 

  29. Porenta, T., Ravnik, M. & Žumer, S. Effect of flexoelectricity and order electricity on defect cores in nematic droplets. Soft Matter 7, 132–136 (2011).

    Article  CAS  Google Scholar 

  30. Tiribocchi, A., Cates, M. E., Gonnella, G., Marenduzzo, D. & Orlandini, E. Flexoelectric switching in cholesteric blue phases. Soft Matter 9, 4831–4842 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Engineering and Physical Sciences Research Council UK under the COSMOS project (grants EP/D04894X/1 and EP/H046658/1), and by the Defence Science & Technology Laboratory UK. We thank A. Lorenz, J. Montelongo, D. Gardiner, K. Knowles and L. Tian for useful discussions, and H. Hasebe (DIC Corp., Japan) for supplying the material UCL-011-K1. S.M.M. acknowledges The Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Contributions

H.J.C. and F.C. conceived the idea. F.C., J.M.C.H., A.D.W. and S.S.C. developed the fabrication process and produced samples. F.C. carried out the experiments in the Cambridge laboratories and took the reported data. B.I.O. carried out the repeat electro-optic experiment in the Oxford laboratories. F.C. discovered the Pockels effect in distorted samples. F.C., S.J.E., B.I.O and S.M.M. interpreted the data. M.M.Q. and S.N. synthesized the bimesogenic materials. T.D.W., L.H. and C.B. supplied equipment and were collaborators on the project. S.M.M. and H.J.C. informed and directed the research. F.C. wrote the paper in collaboration with all the authors.

Corresponding authors

Correspondence to F. Castles, S. M. Morris or H. J. Coles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 707 kb)

Supplementary Information

Supplementary Movie 1 (WMV 12847 kb)

Supplementary Information

Supplementary Movie 2 (WMV 6623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castles, F., Morris, S., Hung, J. et al. Stretchable liquid-crystal blue-phase gels. Nature Mater 13, 817–821 (2014). https://doi.org/10.1038/nmat3993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3993

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing