Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide


A quantum critical point arises at a continuous transformation between distinct phases of matter at zero temperature. Studies in antiferromagnetic heavy-fermion materials have revealed that quantum criticality has several classes, with an unconventional type that involves a critical destruction of the Kondo entanglement1,2. To understand such varieties, it is important to extend the materials basis beyond the usual setting of intermetallic compounds. Here we show that a nickel oxypnictide, CeNiAsO, exhibits a heavy-fermion antiferromagnetic quantum critical point as a function of either pressure or P/As substitution. At the quantum critical point, non-Fermi-liquid behaviour appears, which is accompanied by a divergent effective carrier mass. Across the quantum critical point, the low-temperature Hall coefficient undergoes a rapid sign change, suggesting a sudden jump of the Fermi surface and a destruction of the Kondo effect3,4. Our results imply that the enormous materials basis for the oxypnictides, which has been so crucial in the search for high-temperature superconductivity, will also play a vital role in the effort to establish the universality classes of quantum criticality in strongly correlated electron systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resistivity versus temperature in CeNiAsO under different hydrostatic pressures.
Figure 2: Phase diagram of CeNiAsO under pressure.
Figure 3: Specific heat of CeNiAs1 − xPxO.
Figure 4: Magnetic property of P-doped CeNiAsO.


  1. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  CAS  Google Scholar 

  2. Gegenwart, P., Si, Q. & Steglich, F. Quantum criticality in heavy-fermion metals. Nature Phys. 4, 186–197 (2008).

    Article  CAS  Google Scholar 

  3. Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 . Nature Mater. 11, 189–194 (2012).

    Article  CAS  Google Scholar 

  4. Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

    Article  CAS  Google Scholar 

  5. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1 − xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  6. Chen, G. F. et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1 − xFxFeAs. Phys. Rev. Lett. 100, 247002 (2008).

    Article  CAS  Google Scholar 

  7. Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2(As1 − xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).

    Article  Google Scholar 

  8. Brüning, E. M. et al. CeFePO: A heavy fermion metal with ferromagnetic correlations. Phys. Rev. Lett. 101, 117206 (2008).

    Article  Google Scholar 

  9. Luo, Y. et al. Phase diagram of CeFeAs1 − xPxO obtained from electrical resistivity, magnetization, and specific heat measurements. Phys. Rev. B 81, 134422 (2010).

    Article  Google Scholar 

  10. Kitagawa, S., Ishida, K., Nakamura, T., Matoba, M. & Kamihara, Y. Ferromagnetic quantum critical point in heavy-fermion iron oxypnictide CeRu1 − xFexPO. Phys. Rev. Lett. 109, 227004 (2012).

    Article  CAS  Google Scholar 

  11. Dai, J., Zhu, J-X. & Si, Q. f-spin physics of rare-earth iron pnictides: Influence of d-electron antiferromagnetic order on the heavy fermion phase diagram. Phys. Rev. B 80, 020505(R) (2009).

    Article  Google Scholar 

  12. Luo, Y. et al. CeNiAsO: An antiferromagnetic dense Kondo lattice. J. Phys. Condens. Matter 23, 175701 (2011).

    Article  Google Scholar 

  13. Xu, G. et al. Doping-dependent phase diagram of LaOMAs (M = V –Cu) and electron-type superconductivity near ferromagnetic instability. Europhys. Lett. 82, 67002 (2008).

    Article  Google Scholar 

  14. Ronning, F. et al. Ni2X2 (X = pnictide, chalcogenide, or B) based superconductors. Physica C 469, 396–403 (2009).

    Article  CAS  Google Scholar 

  15. Miyake, K., Matsuura, T. & Varma, C. M. Relation between resistivity and effective mass in heavy-fermion and A15 compounds. Solid State Commun. 71, 1149–1153 (1989).

    Article  CAS  Google Scholar 

  16. Si, Q., Rabello, S., Ingersent, K. & Smith, L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

    Article  CAS  Google Scholar 

  17. Wang, C. et al. Superconductivity in LaFeAs1 − xPxO: Effect of chemical pressures and bond covalency. Europhys. Lett. 86, 47002 (2009).

    Article  Google Scholar 

  18. Huntelaar, M. E., Booij, A. S., Cordfunke, E. H. P. & van der Laan, R. R. The thermodynamic properties of Ce2O3(s) from T → 0 K to 1500 K. J. Chem. Thermodynam. 32, 465–482 (2000).

    Article  CAS  Google Scholar 

  19. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article  CAS  Google Scholar 

  20. Aichhorn, M. et al. Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO. Phys. Rev. B 80, 085101 (2009).

    Article  Google Scholar 

  21. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k, An augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universitat Wien, 2001).

    Google Scholar 

  22. Gunnarsson, O. & Schönhammer, K. Electron spectroscopies for Ce compounds in the impurity model. Phys. Rev. B 28, 4315–4341 (1983).

    Article  CAS  Google Scholar 

  23. Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

    Article  CAS  Google Scholar 

  24. Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, 723–738 (2001).

    Article  Google Scholar 

  25. Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

    Article  CAS  Google Scholar 

  26. Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum critical point. Proc. Natl Acad. Sci. USA 107, 14547–14551 (2010).

    Article  CAS  Google Scholar 

  27. Lee, M., Husmann, A., Rosenbaum, T. F. & Aeppli, G. High resolution study of magnetic ordering at absolute zero. Phys. Rev. Lett. 92, 187201 (2004).

    Article  CAS  Google Scholar 

  28. Hackl, A. & Vojta, M. Zeeman-driven Lifshitz transition: A model for the experimentally observed Fermi-surface reconstruction in YbRh2Si2 . Phys. Rev. Lett. 106, 137002 (2011).

    Article  Google Scholar 

  29. Clark, M. J. & Smith, T. F. Pressure dependence of Tc for lead. J. Low Temp. Phys. 32, 495–503 (1978).

    Article  CAS  Google Scholar 

  30. Eiling, A. & Schilling, J. S. Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1–300 K and 0–10 GPa-use as continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In. J. Phys. F 11, 623–639 (1981).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Basic Research Program of China (Grant Nos 2011CBA00103 and 2012CB927404), the National Science Foundation of China (Grant Nos 11190023, 11174247, 10934005 and 11274084), the NSF of Zhejiang Province (No. Z6110033), the Fundamental Research Funds for the Central Universities of China, the National Science Foundation under grant Nos DMR 0819860 and DMR-1309531, the Nano Electronics Research Corporation (Award 2010- NE-2010G), and the Robert A. Welch Foundation Grant No.C-1411. Y. Luo would like to acknowledge a scholarship from the China Scholarship Council (CSC-2010632081). The DMFT calculations were performed using the computational facilities of the Swedish National Infrastructure for Computing (SNIC) under projects 003-11-1 and 001-11-125.

Author information

Authors and Affiliations



Y. Luo, N.P.O., Q.S. and Z.X. designed the research. Y. Luo synthesized the samples and performed most of the measurements. L.P. and A.G. carried out the first-principles calculations. N.P.O. and S.E.R. provided important equipment and took part in helpful discussions. S.E.R., C.F. and Y. Li performed some of the measurements. G.C., J.D., Y. Luo, L.P., Q.S. and Z.X. discussed the data, interpreted the results, and wrote the paper.

Corresponding author

Correspondence to Zhu’an Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2704 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Pourovskii, L., Rowley, S. et al. Heavy-fermion quantum criticality and destruction of the Kondo effect in a nickel oxypnictide. Nature Mater 13, 777–781 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing